Optimisation of Cost 231-Hata model based on deep learning Online publication date: Mon, 23-Jan-2023
by Qinxia Huang; Cheng Zhang; Jing Liu; Shilin Wu
International Journal of Innovative Computing and Applications (IJICA), Vol. 13, No. 5/6, 2022
Abstract: Based on the dataset of question A in the 16th 'Huawei Cup' mathematical modelling competition, this paper uses deep learning algorithm to optimise the Cost 231-Hata model of wireless communication. Firstly, the feature parameters of Cost 231-Hata model are analysed, and the corresponding features are found in the dataset. Secondly, two new reference features are extracted according to the geometric relationship between base station and cell location. Then, the principal component analysis is used to reduce the dimension of the dataset, and six features that are highly correlated with the target are extracted from multiple reference features. Finally, as these six features are taken as the input of neural network, and a wireless propagation model based on deep learning is constructed by using error back propagation algorithm. The results show that the prediction accuracy of this model is higher than that of the traditional Cost 231-Hata model.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Innovative Computing and Applications (IJICA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com