Design and analysis of an IoT enabled unmanned aerial vehicle to monitor carbon monoxide: methodology and application Online publication date: Tue, 07-Feb-2023
by Ozge Kucukkor; Orhan Aras; Emre Ozbek; Selcuk Ekici; T. Hikmet Karakoc
International Journal of Global Warming (IJGW), Vol. 29, No. 1/2, 2023
Abstract: Unmanned aerial vehicles (UAVs) are efficient platforms for the inspection and detection of hazardous particle emission locations in terms of cost and ability to reach challenging areas. In this study, a custom quadcopter UAV with metal oxide semiconductor (MOS) type carbon monoxide (CO) sensor and data acquisition module is designed to detect and measure CO pollution over industrial sites and urban areas. Unlike similar studies, a rope hanging design is used for sensor extension and collected data transmitted to the cloud using internet of things (IoT) technology. Flight tests are conducted to collect measurements over an area with a controlled fire to replicate industrial chimneys. CO readings on 26 data points result in between 0 and 4 PPM concerning their distance to the pollution zone. Therefore, a heatmap is created using real-time GPS locations and measured CO concentrations. Challenges in this operation are explained to guide future researchers and entrepreneurs.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com