Assessment of environmental sustainability with entropy-based indicators for integrated buildings Online publication date: Tue, 07-Feb-2023
by M. Ziya Sogut
International Journal of Global Warming (IJGW), Vol. 29, No. 1/2, 2023
Abstract: Different climatic conditions directly affect fuel consumption of traditional heating systems in buildings and, together with this system-induced entropy generation, constitute one of the main sources of CO2 emissions with a global impact. Although these consumptions vary primarily according to combustion performance, they generally define a high rate of exergy destruction due to irreversibility depending on the system operation and load values. In this study, first, exergy analyses were performed in order to evaluate the entropy performance and analyse it comparatively with the process efficiency. Accordingly, the fuel-based exergy efficiency of the building was found to be 55.02%, and the efficiency potential for total improvement was determined as 20.31% depending on the parametric values and the entropy criteria developed. At the end of the study, the features of the two criteria developed in such building preferences were evaluated and some recommendations were presented.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com