Tracking and decomposition of throwing and jumping movements in high level figure skating based on deep learning Online publication date: Mon, 03-Apr-2023
by Xue Bai
International Journal of Information and Communication Technology (IJICT), Vol. 22, No. 3, 2023
Abstract: In order to overcome the problems of high average noise and poor decomposition accuracy of throwing jump in traditional motion tracking decomposition methods, this paper proposes a new high-level figure skating throwing jump motion tracking decomposition method based on deep learning. The average depth of the key frame of the throwing action image is calculated, and the average depth is input into the depth learning neural network for training. According to the training results, the depth image is regularised to track the throwing action. According to the tracking results, the AHP judgment matrix is given, and the target trajectory characteristics of figure skating throwing jump are obtained, and thereby the decomposition of high-level figure skating throwing jump is completed. The experimental results show that the mean noise of the designed method is 0.05 dB, and the decomposition ability is higher.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Communication Technology (IJICT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com