Effect of variation of ceramic reinforcement content on metallurgical and cavitation erosion behaviour of microwave processed composite clads
by Sandeep Bansal; Sarbjeet Kaushal; Dheeraj Gupta; Vivek Jain
International Journal of Surface Science and Engineering (IJSURFSE), Vol. 17, No. 2, 2023

Abstract: The effect of varying (0%-30% by weight) reinforcement (Cr3C2) on the different characteristics of microwave processed composite clads (Ni-based (EWAC) matrix) was determined. The microstructure of composite clads showed growth of randomly orientated lamellar bands (Cr-Fe-C) rich phase in the Ni-Fe-Cr rich matrix, which confirmed the metallurgical bonding of clads with substrate. Higher microhardness values, with a lower standard deviation, were observed in the 30% Cr3C2 reinforced clad. Excellent cavitation erosion resistance of EWAC + 30% Cr3C2 composite clads, among all other clads and substrate samples, was observed. Synergy of higher microhardness and toughness resulted in significant improvement in the cavitation erosion resistance. Formation of pits, craters and plastic deformations were mainly responsible for the cavitation erosion failure of clads and substrate samples. The transition of damage from ductile mode to dual (brittle and ductile), and further brittle mode was observed with increase in weight percentage of reinforcement.

Online publication date: Wed, 05-Apr-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Surface Science and Engineering (IJSURFSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com