Distracted driving behaviour recognition based on transfer learning and model fusion
by Guantai Luo; Wanghui Xiao; Xinwei Chen; Jin Tao; Chentao Zhang
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 24, No. 2, 2023

Abstract: In the recognition of distracted driving behaviour, traditional manual feature extraction is subjective and complex; single deep convolutional network also has problems such as insufficient generalisation performance and stability. To solve the above problems, this paper proposes a distracted driving behaviour recognition method based on transfer learning and model fusion. First, based on the transfer learning method, the deep convolutional neural network models ResNet18 and ResNet34 are used to extract the features of some images, respectively. Furthermore, the pre-trained model is fine-tuned to obtain four deep convolutional neural network models. Finally, the four network models are fused by stacking method, using 5-fold cross-validation method to reduce over-fitting. Experimental results show that the recognition accuracy of distracted driving behaviour after model fusion reaches 95.47%. The fusion model has higher model generalisation performance and recognition accuracy, which can provide certain technical support for the research of distracted driving behaviour recognition.

Online publication date: Wed, 19-Apr-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com