Comparative analysis of image classification with retrieval system Online publication date: Fri, 21-Apr-2023
by Jatothu Brahmaiah Naik; Siva Nagi Reddy Kalli; Ravi Boda
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Vol. 42, No. 4, 2023
Abstract: Currently, the term 'content-based image retrieval' seems to be a highly attentive system for handling the broad image datasets since the data storage mechanisms and image acquisition are becoming the most empowered logic in image processing. The previous CBIR system has been proposed under nonlinear similarity matching measure in a logarithmic scale and informative pattern descriptor has quantified the range of similarity content. This article implements a novel CBIR system that emphasises the classification concept using a deep belief network (DBN) classifier. In this concept, apart from the image retrieval, the used classifier classifies the respective classes of retrieved images. Finally, the proposed local vector pattern (PLVP) with DBN classifier (PLVP-DBN) compares its performance over other conventional retrieval concepts: PLVP-with log similarity, PLVP-without log similarity, and also with neural network (NN) classifier.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com