Elucidating two-stage flowshop multiprocessor scheduling problems using a hybrid genetic algorithm
by Shun-chi Yu
International Journal of Mathematics in Operational Research (IJMOR), Vol. 25, No. 2, 2023

Abstract: In recent decades, genetic algorithms (GAs) have often been applied as heuristic techniques at various settings entailing production scheduling. However, early convergence is one of the problems associated with this approach. This study develops an efficient local search rule for the target-oriented rule in traditional GAs. It also addresses the problem of two-stage multiprocessor flowshop scheduling (FSP) by viewing the due window and sequence-dependent setup times as constraints faced by common flowshops with multiprocessor scheduling suites in the actual production scenario. Using the simulated data, this study verifies the effectiveness and robustness of the proposed algorithm. The results of data testing demonstrate that the proposed method may outperform other algorithms, including a significant hybrid algorithm, in addressing the problems considered.

Online publication date: Fri, 09-Jun-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematics in Operational Research (IJMOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com