Privacy preserving dynamic data release based on non-synonymous diverse anatomy Online publication date: Tue, 20-Jun-2023
by Yan Yan; Anselme Herman Eyeleko; Adnan Mahmood; Zichao Sun; Zhuoyue Dong; Fei Xu
International Journal of Security and Networks (IJSN), Vol. 18, No. 2, 2023
Abstract: The publishing and using of big data brought unprecedented convenience to users. However, it also results in the disclosure of personal privacy information. In order to mitigate the privacy leakage risk of sensitive information during dynamic data updating, this paper envisages a non-synonymous diverse anatomy method for the privacy preserving dynamic data publishing. The envisaged method inherits the advantages of the traditional anatomy method, retains the availability of the original data to the greatest extent, and avoids the loss of information caused by the generalisation process. A series of indicators are designed to evaluate the synonymous linkage between non-numerical sensitive values. A novel grouping mechanism is further proposed to achieve l-diversity anatomy by combining the concept of synonymous linkage and synonymous entropy with the dynamic update procedure. Experimental analysis suggests that the envisaged method can provide better privacy protection effect on the published data.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Security and Networks (IJSN):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com