Research on parallel association rule mining of big data based on an improved K-means clustering algorithm Online publication date: Wed, 21-Jun-2023
by Li Hao; Tuanbu Wang; Chaoping Guo
International Journal of Autonomous and Adaptive Communications Systems (IJAACS), Vol. 16, No. 3, 2023
Abstract: In order to overcome the problems of time-consuming, low-precision and redundant rules in association rule mining of big data, a parallel association rule mining method based on an improved K-means clustering algorithm is proposed. Establish a data object criterion function and optimise k-means clustering algorithm. The improved K-means clustering algorithm is used to cluster big data and improve the efficiency of mining association rules. This paper introduces the matter-element theory of extension, combines matter-element theory and database, and constructs the matter-element relation database model of extension to realise the mining of parallel association rules in big data on the basis of extension. Redundant algorithms and equivalent transformations are used to eliminate redundant association rules. The experimental results show that the proposed method has high mining efficiency, high mining accuracy, and high rule association, which proves that the proposed method has better application performance.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Autonomous and Adaptive Communications Systems (IJAACS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com