A novel LightGBM-based industrial internet intrusion detection method Online publication date: Tue, 11-Jul-2023
by Zhiqiang Lv
International Journal of Computer Applications in Technology (IJCAT), Vol. 71, No. 3, 2023
Abstract: This paper proposes an Active Learning-based Intrusion Detection System. The system introduces expert annotation into the intrusion detection process, and combines the active learning query strategy with LightGBM to solve the problem of low accuracy of the intrusion detection system when the training samples are scarce. First, the process of data pre-processing is applied. Features are extracted from the traffic, and the borderline SMOTE method is introduced to improve the samples distribution. Then, the LightGBM algorithm is adopted for feature selection to reduce the data dimension. Next, the most valuable training samples are selected and labelled by human experts. The training samples are then fed into the classifier, while the Bayesian optimisation is applied to optimise the hyperparameters of the classification model. Finally, a set of experiments are performed to evaluate the performance of our method.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com