Food recognition using enhanced squirrel search optimisation algorithm and convolutional neural network Online publication date: Thu, 24-Aug-2023
by Megha Chopra; Archana Purwar
International Journal of Data Analysis Techniques and Strategies (IJDATS), Vol. 15, No. 3, 2023
Abstract: Owning to the sedentary lifestyle, dietary assessment has become a significant research area. Automated food assessment initiates with food classification. Image classification commences with segmentation. Apparently, thresholding is the elemental method to perform segmentation. Although, there are many ways to optimise the solution of multi-level thresholding, this paper proposes a squirrel search algorithm (SSA)-based optimised solution for multi-level thresholding. It applies convolutional neural network (CNN) to recognise food images. Further, the paper has proposed a new enhanced squirrel search algorithm (ESSA) to improve the food recognition accuracy. The results show that ESSA improves the performance of image segmentation and classification. The performance of the proposed algorithm is evaluated using food datasets UEC-256 and UEC-100 and accuracy of 83.1% and 82.1% was obtained respectively. Proposed algorithm is also compared with existing work taken under this study and it has been observed that it outperformed them.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Analysis Techniques and Strategies (IJDATS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com