Prediction of weather using high-performance gradient boosting Online publication date: Fri, 01-Sep-2023
by V. Bibin Christopher; R. Isaac Sajan; T.S. Akhila; M. Joselin Kavitha
International Journal of Global Warming (IJGW), Vol. 31, No. 1, 2023
Abstract: Our weather prediction technology is imprecise despite its many new uses. Thus, demand exists to adopt a new method that eliminates the system's drawbacks and accurately projects rain. Existing machine learning methods use more RAM, are hard to trim, take a long time to compute, and are hard to use for time series predicting datasets. A high-performance gradient-boosting framework-based decision tree algorithm predicts rain. We used light gradient boosting machine (Light GBM), a leaf-wise method with best-fitting models that eliminates overfitting better than other decision tree algorithms. Predicting continuous goal variables is faster, more efficient, and uses less memory. Rain is Seattle's trademark. This study uses the Seattle dataset of daily weather from 1948 to 2017. The goal is to compute DATE, PRCP, TMAX, TMIN, and RAIN at each break and create a final forecast based on the sampled light BGM that is more accurate than other boosting algorithms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com