Face recognition using local binary pattern and Gabor-Kernel Fisher analysis Online publication date: Mon, 04-Sep-2023
by Tulasi Krishna Sajja; Hemantha Kumar Kalluri
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 26, No. 1, 2023
Abstract: Face recognition technology is one of the everyday tasks in our daily life. But, recognising the correct face with high accuracy from large databases is a challenging task. To overcome this challenge, feature fusion of local binary pattern (LBP) with Gabor-Kernel Fisher analysis (Gabor-KFA) has proposed for face recognition. In this method, by using Gabor filter, extract Gabor features from a face image, on the other hand, extract features from LBP coded face image, then combined these extracted features generate high dimensional feature space. With this high dimensionality features, the complexity of training time and identification time may increase. To avoid this complexity, the Kernel Fisher analysis algorithm was adopted to reduce the feature vector size. Experiments were conducted separately on Gabor features and also on fused features. To test the performance of the proposed approach, the experiments were performed on the IIT Delhi database, ORL database, and FR database.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com