Slat noise control using active piezo-ceramic actuator Online publication date: Mon, 11-Sep-2023
by Dawei Li; Kaibo Yu; Xiao Wang; Congyun Wang
International Journal of Computer Applications in Technology (IJCAT), Vol. 72, No. 3, 2023
Abstract: An active control method based on piezo-ceramic actuator has been used to reduce pressure fluctuations of shedding vortex on the reattachment point in the slat cavities and sound intensities of far field by simulations and wind tunnel experiments. The periodic active vibration control was imposed on the cusp to change the original properties of shedding vortex on leading edge of slat, and further altered intensities of pressure fluctuations on reattachment point of the vortex shedding. An optimisation model has been designed by DDES simulations and measuring experiments, which can reproduce flow field characteristics in the flat of 30P30N airfoil. The wind tunnel experiments show that pressure fluctuations of reattachment point can be reduced by the active control. The fourth peak value of pressure fluctuation of the reattachment point is reduced with the increase of control frequencies, and reaches a minimum value when the frequency is 500 Hz. However, the control has little effect on sound intensities of far field.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com