Do data mining techniques assist auditors in predicting high-risk accounts in MENA Region countries?
by Wafaa Salah Mohamed; Lamiaa Fattouh Ibrahim; Moid Uddin Ahmad
Afro-Asian J. of Finance and Accounting (AAJFA), Vol. 13, No. 5, 2023

Abstract: This study aims to construct a model that increases the accuracy of forecasting qualified audit opinions using publicly available measures and artificial intelligence. Additionally, the study probes the financial variables affecting an auditor's propensity to issue a qualified audit report. This study investigated the predictive abilities of three models: binary logistic regression, random forest, and decision tree. The study examined 564 audit reports (282 qualified reports) from nine MENA region countries from 2012 to 2018. The random forest technique produces the most accurate audit prediction. The study found that the significant firm-level variables that affect auditor opinion are book value per share, client size, and leverage ratio. The study's findings will bolster auditors, policymakers, and managers in effective decision-making.

Online publication date: Fri, 15-Sep-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Afro-Asian J. of Finance and Accounting (AAJFA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com