Personalised learning systems: drivers of employees' behavioural intention Online publication date: Mon, 25-Sep-2023
by Sandra Schlagheck; Gerhard Schewe
International Journal of Web Engineering and Technology (IJWET), Vol. 18, No. 3, 2023
Abstract: Knowledge management is essential for achieving and maintaining competitive advantage. This can be fostered by learning activities. Due to personalisation, learning materials can be tailored to the learners' needs and, thus, improve effectiveness and efficiency. To successfully implement such systems, users' acceptance is crucial. However, which factors affect the intention to use personalised learning systems remains unclear. By applying the unified theory of acceptance and use of technology, we explore factors influencing the intention to use them. Using a quantitative cross-sectional survey, 331 German employees from various industries and positions are asked. A structural equation model with maximum likelihood estimation is chosen for the analysis. Three potential moderators (gender, age, and experience) are examined based on multi-group analyses. Our results suggest that behavioural intention is mainly driven by the expected performance and the anticipated pleasure of using the system. Performance expectancy fully mediates the influence of trustworthiness on intention.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web Engineering and Technology (IJWET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com