A machine learning-based credit lending eligibility prediction and suitable bank recommendation: an Android app for entrepreneurs Online publication date: Fri, 29-Sep-2023
by Jakia Parvin; Mahfuzulhoq Chowdhury
International Journal of Applied Management Science (IJAMS), Vol. 15, No. 3, 2023
Abstract: In Bangladesh, men and women are entering business not only to earn money but also to change their social conditions. Capital for conducting business is a big challenge for both male and female entrepreneurs. However, due to the lack of a proper loan eligibility system, both male and female entrepreneurs faced several problems regarding getting loans. Most entrepreneurs are unwilling to take loans from banks because their loan applications are rejected for various reasons. To overcome these challenges, in this paper, an automated recommendation system has been provided in a mobile application. This paper collects a real-time dataset for loan approval prediction systems. The system also develops a prediction model using machine learning algorithms that predict an entrepreneur's loan eligibility. The android application offers recommendations for a suitable bank for an eligible entrepreneur based on the prediction model and user data. The presented results confirm the necessity of our proposed system.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Management Science (IJAMS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com