Automated hard exudate segmentation using neural encoders and attention mechanisms for diabetic retinopathy diagnosis Online publication date: Mon, 02-Oct-2023
by Pratiksha Gawas; Sowmya Kamath S.
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 43, No. 1, 2023
Abstract: Diabetic retinopathy (DR) is a complication caused by increased blood glucose levels, which causes retinal damage in diabetic patients' eyes. If not discovered and treated early, it can lead to vision loss. Hard exudates (HE) are one of its characteristic signs. Identification of HE is a paramount step in early diagnosis of DR. In this work, the suitability of U-Net-based deep CNN with different encoder configurations and attention gates (AG) is experimented, for HE segmentation. The proposed models were benchmarked on the standard IDRiD dataset. To overcome the challenges related to the limited dataset, data augmentation techniques were also applied to generate image patches and used for model training. Extensive experiments on the dataset revealed that U-Net with AG achieved an accuracy of 98.8%. The U-Net with ResNet50 as the encoder backbone achieved an accuracy of 98.64%. The findings show that the presented models are effective and suitable for early-stage clinical diagnosis.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com