Revisiting the auto-regressive integrated moving average approach to modelling volatility using Bahrain all share index daily returns Online publication date: Tue, 03-Oct-2023
by Mark P. Doblas; Vinodh K. Natarajan; Jayendira P. Sankar
Middle East J. of Management (MEJM), Vol. 10, No. 6, 2023
Abstract: Most academic researchers in economics and finance have researched the characteristics of stock prices and how it behaves. The widespread belief that understanding the mentioned behaviour and characteristics will provide critical information in forecasting future stock prices fuels the continued interest in creating approaches to improve existing models' predictive power. This study provides a fresh investigation of stock market index volatility utilising Box-Jenkin's auto-regressive integrated moving average (ARIMA) method. The study discovered that ARIMA (1, 1, 4) best simulates Bahrain's stock market index volatility. According to the research, the fitted ARIMA time series' consecutive residuals (prediction errors) were not statistically connected. On the other hand, the residuals are average, having a mean of zero and a constant variance. Moreover, it can be said that the same model is best if used on a weekly forecast horizon, and its ability to model long-term price behaviour, and thus volatility, is still much to be desired.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the Middle East J. of Management (MEJM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com