Research on government network public opinion monitoring algorithm under the background of sustainable smart government Online publication date: Wed, 04-Oct-2023
by Shiwei Zhang
International Journal of Networking and Virtual Organisations (IJNVO), Vol. 28, No. 2/3/4, 2023
Abstract: It is very necessary for the government to strengthen the supervision of network information. Considering the problems of over fitting and gradient disappearance in the traditional bi directional long short-term memory (BiLSTM) network, the regularisation method is used to adjust the input weight of the model. At the same time, 333 functions is used to replace tanh activation function to build a government network public opinion monitoring model of double-layer long short-term memory network (RLSTM). The model performance test results show that in dataset type 1, the public opinion prediction accuracy is 0.993, and in dataset type 2, the public opinion prediction accuracy is 0.982, and the prediction performance is the best. At the same time, the improved RLSTM model also has excellent performance in the test of model convergence effect and error performance. The research content is of great significance to strengthen the security supervision of network information.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Networking and Virtual Organisations (IJNVO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com