Fault identification method of electrical automation distribution equipment in distribution networks based on neural network Online publication date: Thu, 12-Oct-2023
by Zhenzhuo Wang; Yijie Zhu
International Journal of Energy Technology and Policy (IJETP), Vol. 18, No. 3/4/5, 2023
Abstract: Fault identification of power distribution equipment is of great significance in ensuring the reliability of power supply, saving operating costs, and improving work efficiency. Therefore, a fault identification method of electrical automation distribution equipment in distribution networks based on neural network is proposed. AT89C51 microcontroller is used to establish the architecture of equipment running status signal acquisition, and carry out noise reduction processing. The BP neural network is used to build a fault identification model for power distribution equipment, with the filtered signal used as the model input parameter, and the fault identification result used as the model output parameter, to obtain the fault identification result. The experimental results show that the signal-to-noise ratio of the equipment operation signal of this method has an average value of 54.61 dB, the recognition accuracy remains above 95%, and the average completion time of the identification task is 69.1 ms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Energy Technology and Policy (IJETP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com