Prescribed performance control for a pneumatic cylinder with strong friction via nonlinear extended state observer Online publication date: Wed, 18-Oct-2023
by Shaomeng Gu; Ce Yan; Xin Liu; Ling Zhao; Bo Liu
International Journal of Hydromechatronics (IJHM), Vol. 6, No. 4, 2023
Abstract: In this paper, a nonlinear extended state observer (NESO)-based prescribed performance control (PPC) method is developed for a pneumatic cylinder with strong friction. For the system model, a pneumatic servo system with strong nonlinearity is established to describe the pneumatic cylinder with strong friction. To improve control accurate under the strong nonlinearity conditions, PPC is design to prescribe its transient and steady-state performances. Moreover, both the NESO convergence and the closed-loop system stability are analysed by utilising Lyapunov approaches. Finally, simulation results and experimental results confirm the effectiveness and robustness.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydromechatronics (IJHM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com