Quantum simulation scenarios and disease classification behaviour on diabetes data Online publication date: Mon, 30-Oct-2023
by Ajeet Singh; N.D. Patel
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Vol. 44, No. 2, 2023
Abstract: In quantum mechanics, the state of a particle can be fully characterised for all future periods based on the beginning conditions and knowledge of the potential occupied by the particle. This paper presents an overview of the integration of statistical machine learning and quantum mechanics. Furthermore, we provide simulation scenarios, classification behaviour, and empirical observations on healthcare data through the utilisation of Feynman diagrams (Feynman et al., 2010) and QLattice (Abzu, 2022). The experimental simulation is carried out in the following instances: 1) changing the number of updating loops; 2) calling the qgraph.fit function multiple times before updating the QLattice; 3) fitting and selecting graphs according to different loss functions; 4) setting the graphs max depth to comparatively higher or smaller values. The paper concludes by summarising the observations made throughout the study and discussing the potential for future work in this field.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com