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Abstract: In order to explore the measurement performance of grid energy 
meters under multi-dimensional influence conditions on site and map their 
measurement errors under standard laboratory conditions, a measurement error 
estimation method for on-site service energy meters based on big data analysis 
technology is proposed, which combines environmental data and electrical 
factor data from on-site operation to achieve online measurement error 
estimation. To address the problem of electricity meter demand prediction, a 
reasonable optimisation allocation model for electricity meters based on 
Shapley combination model and neural network is established to improve the 
accuracy of demand prediction. By mining historical data, Holt Winters, BP 
neural network, and RBF neural network models are used to predict, compare, 
and analyse the demand for electricity meters. The test results indicate that the 
built model can achieve reliability evaluation based on the real-time operating 
status of intelligent energy meters, providing auxiliary decision-making for the 
operation and maintenance of intelligent energy meters. 

Keywords: intelligent energy meter; electric energy error; temperature; power 
factor; BP neural network. 

Reference to this paper should be made as follows: Wang, C. (2023)  
‘A method for identifying and evaluating energy meter data based on big data 
analysis technology’, Int. J. Information and Communication Technology,  
Vol. 23, No. 4, pp.424–445. 

Biographical notes: Chencheng Wang holds a Master’s degree and is a Senior 
Engineer. His main research field is electricity metering and informatisation. 

 

1 Introduction 

Smart energy meters are measuring instruments that are subject to mandatory national 
verification and management. Their measurement errors not only affect the interests of 
thousands of households, but also affect the safety, stability, and economic operation of 
smart grids. Currently, under laboratory reference conditions (Hu et al., 2023; Huo et al., 
2023), error verification is usually carried out on electricity meters that have expired 
before grid installation and eight years of rotation. This method cannot perform 
measurement error verification on electricity meters that are in grid operation. In 
addition, portable devices can also be used for on-site calibration of energy meters, or the 
meters can be disassembled for laboratory calibration. However, considering the large 
number of smart energy meters, with hundreds of millions of grid connected energy 
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meters, whether it is dismantling the meters back to the laboratory for calibration or using 
portable equipment for on-site calibration, it requires a lot of manpower and material 
resources, a large workload, high cost, high labour intensity, and low work efficiency. 
The measurement error of smart energy meters is seriously affected by environmental 
conditions. The actual operating conditions of on-site grid operation are complex and 
random, and there is a problem of inconsistency between operating conditions and 
laboratory reference conditions. This leads to the risk of exceeding the standard for 
laboratory certified energy meters during on-site operation. Therefore, the evaluation of 
on-site operation measurement errors of electric energy meters under multidimensional 
time-varying conditions has become a difficult problem that needs to be urgently solved 
in this field. 

At present, the following three methods are mainly used to establish a mathematical 
model for reasonably evaluating the reliability of intelligent energy meters. Firstly, by 
establishing a failure rate model using the component stress method, it is possible to 
effectively simulate faults or abnormal situations of smart energy meters based on 
hardware structure and functional design, and calculate failure – mean time to failure 
(MTTF) based on the component manual to characterise the estimated lifespan of smart 
energy meters, It can be used as an important parameter for reliability evaluation of 
intelligent energy meters (González-Cagigal et al., 2021; Andrade et al., 2020; Chen 
et al., 2023); Secondly, based on a pre assumed distribution of the failure efficiency of an 
intelligent energy meter, such as the Wilson distribution, the least squares fitting of the 
parameters is performed on the fault data of the intelligent energy meter to obtain a 
reliability evaluation model for the intelligent energy meter (Rasooli and Itard, 2020); in 
addition, combined with the assumed failure efficiency distribution of smart energy 
meters and the multi stress Peck model, an accelerated life test was conducted on smart 
energy meters to evaluate their reliability (Zezheng et al., 2022; Guorui et al., 2019; Air 
China et al., 2023). However, current research mostly faces the problem of highly 
simplified functional topology of smart energy meters and static parameters of the formed 
life model, which cannot reflect or adapt to the impact of changes in the physical model 
and operating environment conditions of smart energy meters (Lu et al., 2023; Yang 
et al., 2022a; Yang et al., 2022b; Wang et al., 2022b). The accelerated life test is more 
complex, and as the reliability level of smart energy meters gradually improves, the cost 
of obtaining failure sample data required in the test is relatively high. 

With the continuous improvement of business systems such as the power user 
electricity information collection system (referred to as the collection system) and 
marketing business system (Zhang et al., 2022), the synchronisation and completeness of 
power data collection continue to improve. The use of power big data to achieve online 
monitoring of the operating status of electricity meters has become a new effective 
control method. The existing online monitoring methods mainly include energy balance 
in the substation area, clustering of electricity consumption status, and building 
evaluation systems. The principle of energy balance is the foundation of most research on 
measurement inaccuracy analysis. Wang and Ouyang (2022) constructs equations based 
on the low-voltage substation assessment table and the electricity balance relationship of 
user meters, and uses linear regression algorithm to solve and obtain the operating errors 
of each energy meter; Wen et al. (2022) defines the actual flow increment of a 
generalised flow instrument using reading increment and relative error under the 
principle of flow conservation, and derives an equation for the reading increment and 
relative error of the instrument. In state clustering, Ding et al. (2022) uses a BP neural 
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network classifier to monitor the operating error of the electricity meter; Lu et al. (2023) 
focuses on clustering features of electricity consumption behaviour in both vertical time 
and horizontal space, achieving large-scale anomaly detection of electricity consumption 
data streams. In the evaluation system evaluation, Beibei (2022) divided the energy 
metering device into four parts: energy meter, current transformer, voltage transformer, 
and secondary circuit. Combined with operating status data, the operating errors of each 
equipment were evaluated; Yu et al. (2022) calculates the failure rate, scrap cost, and 
depreciation rate of electricity meters based on ‘manufacturer + batch’. 

To address the shortcomings of existing reliability evaluation methods, a modelling 
method for intelligent energy meter reliability evaluation based on multi-source data 
fusion is proposed for reasonable evaluation of intelligent energy meter reliability. After 
integrating and organising multi-source big data of smart energy meters, survival analysis 
theory is used to model them, and they are used as covariates that affect the reliability of 
smart energy meters to characterise their survival function. At the same time, a deep 
neural network was used to learn the survival function parameters, and a survival 
function model of intelligent energy meters under the influence of covariates was 
obtained. The evaluation results were compared with traditional methods such as classical 
component stress method through example analysis, verifying the rationality and 
feasibility of the model. According to the analysis of existing literature, the research on 
demand forecasting of electric energy meters can be mainly divided into single model 
forecasting and combined model forecasting. Compared with the single model prediction, 
the combined model prediction can further improve the prediction accuracy by 
combining each single model and selecting the optimal weight to optimise the results. 
The core of combination model prediction is how to choose the appropriate combination 
method. The Shapley method (Wang et al., 2022a) is a method proposed by Shapley in 
1953 to handle the allocation of benefits for the participation of various alliance members 
in the overall goal. It can effectively handle the contribution allocation problem of each 
participant in cooperation and has been well applied in power demand forecasting and 
other aspects. The article uses the Shapley combination method to model and predict the 
demand for electricity meters. Three models, Holt Winters (Feng et al., 2022), BP neural 
network, and RBF neural network, were compared and combined. The Shapley 
combination method was used to allocate weights to the predicted results of each model, 
in order to exert the predictive effect of each model and achieve comprehensive 
prediction results. Using the LM optimised BP neural network data training method, 
combined with load current, power factor and other data, a mapping relationship model 
between measurement error and environmental temperature, humidity, load current, and 
power factor stress is constructed, that is, a multi-dimensional measurement error model 
suitable for grid connected operation of electric energy meters is established; Then, by 
learning and modelling different types of environmental data, the estimation accuracy of 
energy meter error under on-site operating conditions is improved, and the measurement 
error of the grid energy meter under laboratory conditions is derived; Finally, the 
effectiveness and rationality of the proposed method are verified by using the field data 
validation of an area. 
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2 Method and principle 

2.1 Design of energy error model for intelligent energy meters 

The improved on-site environmental data K-means (Dai et al., 2022) clustering analysis 
flowchart is shown in Figure 1. In terms of constructing the power error model, the 
designed neural network structure is a multi-layer feedback network structure (Zhu et al., 
2022), with full interconnection between layers and no interconnection between the same 
layer. Moreover, the BP neural network structure includes the input layer, hidden layer 
and output layer, which is a neural network based on the back-propagation training 
algorithm of model error. The three-layer nonlinear network can approach any continuous 
function with any precision, and has good generalisation ability (Liu et al., 2022b). 
Therefore, this paper selects a typical three-layer BP neural network topology structure, 
that is, the hidden layer is a single layer, The structural diagram of the neural network 
designed in this article is shown in Figure 2. 

This article clusters the on-site environmental temperature and humidity, combines 
the load current and load power factor, and uses BP neural network (Fan et al., 2022) to 
estimate the measurement error of electric energy meters operating on the network. 
Considering that the units of these four variables are different and the order of magnitude 
is also significant, before using BP neural network to establish an electric energy meter 
measurement error model, the load current and load power factor are also classified and 
processed, Assign values to different load currents and load power factors separately, and 
try to ensure that the assignment range is between [0, 1]. Specifically, when the load 
current is 0.05Ib, 0.1Ib, 0.5Ib, Ib, and Imax, the values are assigned as 0.05, 0.1, 0.5, 0.8, 
and 1, respectively; Load power factor is 1, 0.5 L. 

Assign values of 1, 0.5, and 0.8 respectively at 0.8 C. Research shows that 
temperature, humidity, load current and power factor (Senave et al., 2019) have a serious 
impact on the metering error of electric energy meters. Therefore, the homogenisation 
values of these four stresses are selected as the input parameters of the neural network 
model, that is, the number of neurons in the model input layer a = 4, and the input 
temperature and humidity values are the environmental temperature and humidity values 
in a collection after clustering the on-site environmental cluster analysis (Liu et al., 
2022a). After passing through the input layer neurons (Chen, 2022), the on-site 
environmental data and electrical factor data are the inputs of each neuron in the hidden 
layer. 

4

1
f fg f g

f

H w r
=

= − β  (1) 

Among: wfg Set the weight from the input layer to the hidden layer; βg. The threshold 
from the input layer to the hidden layer. f = 1, 2, …, a, g = 1, 2, …, b. 

B is the number of neurons in the hidden layer; A is the number of neurons in the 
input layer and is 4. And the number of hidden layer neurons 

1b a c a= + +  (2) 
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Figure 1 K-Means cluster analysis flowchart (see online version for colours) 

  

In the formula: c is the number of neurons in the output layer; A1 is a constant and 1 < a1 
＜ 10. 

After obtaining information, the hidden layer processes the data and transmits it to the 
output layer. Considering that the input ambient temperature value, humidity value, load 
current value and load voltage value are normalised, this paper sets the activation 

function as an S-type function 1( ) .
1 x

f x
e−

=
+

 Its output is limited between (0, 1). Since 
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the positive number of the activation function is chosen as an S-type function, the output 
of each node in the hidden layer is 

4

1
g fg f g

f

H f w r
=

 
= −  

 
 β  (3) 

Figure 2 BP neural network structure (see online version for colours) 

 

The output signal of the model built by the BP neural network is the energy error of the 
electricity meter, so the number of neurons in the output layer of the model is c = 1. Let 
the threshold from the hidden layer to the output layer be γ. The weight from the hidden 
layer to the output layer is wh (h = 1, 2, …, b), then the input signal of the output layer is 

f h gY w H γ= −  (4) 

Since the activation function is an S-type function, the output function of the output layer 
can be obtained as 

( )h gy f w H γ= −  (5) 

Compare the estimated error value with the actual error value, and when there is a 
significant difference between the two, the difference will be transmitted back from the 
hidden layer to the input layer. That is, the learning process of the energy meter error 
follows the forward transmission of information and the reverse transmission of learning 
differences. The neural network model continuously adjusts its weight and difference 
threshold, ultimately achieving a difference in output parameters (Li et al., 2021) that is 
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lower than the pre-set learning accuracy. Among them, traditional BP neural networks 
have problems such as slow convergence speed, and may even not converge, and are 
prone to falling into local minima. Many scholars have proposed relevant improvement 
algorithms. This article has decided to use the LM (Zhang et al., 2021) algorithm to 
improve the shortcomings of traditional BP networks, improve the convergence speed of 
the network, and increase the accuracy of network training. The training error function 
and the corresponding Jacobian matrix are obtained, and then the weights of the 
corresponding nodes are adjusted to Wang et al. (2017) using the LM optimisation 
algorithm 

( ) 1Δ T Tw J J μI J e−
= + ⋅  (6) 

In the formula, J is the Jacobian matrix of the weight differentiation of errors; E is the 
error vector; μ is a scalar. 

2.2 Online monitoring method for operating status of low-voltage side energy 
meters 

In the article, the operation status of the low-voltage side energy meter is monitored 
online through component comparison method. The sub component comparison method 
combines the neighbouring voltage comparison method and the zero line current analysis 
method to evaluate the operating status of the metering chip, voltage sampling 
component, and current sampling component of the energy meter, reducing the 
estimation of the energy meter status from the meter level to the component level (Xu 
et al., 2017; Zheng et al., 2016), providing an effective online monitoring method for the 
low voltage side operating status. 

The specific steps for comparing components are as follows: 

1 By querying the event records, characteristic voltage, and response denial of the 
energy meter in the substation area through the collection system, determine whether 
there is a communication failure between the main CPU and the metering chip. If 
there is no fault, proceed to step (2) 

2 Collect voltage, load curve, live line current, zero line current, phase, and clock data 
from electricity meters at the same time section through a data acquisition system, and 
perform data pre-processing (Liu, 2012) 

3 Perform voltage data pre-processing, combined with neighbouring voltage 
comparison method, to analyse the voltage of the same box and phase electric energy 
meter, and locate the abnormal voltage of the electric energy meter under the 
substation area 

4 Perform current data pre-processing and locate abnormal current meters under the 
substation area using zero live line current analysis method 

5 Analyse the correlation between the data obtained from steps (3) and (4) and the type 
of component fault: if there is a voltage anomaly and no current anomaly, it is 
determined that the voltage sampling component is faulty; If there is a current 
anomaly and no voltage anomaly, it is determined that the current sampling 
component is faulty; If there are abnormalities in both, due to the low possibility of 
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simultaneous failure of voltage sampling and current sampling components, it is 
judged that the reference voltage component of the metering chip is faulty. 

Figure 3 Flow chart of component comparison method (see online version for colours) 

 

The flowchart of the component comparison method is shown in Figure 3. 
In step (3), the neighbouring voltage comparison method is used. As the voltage 

measurement values of the same meter box and the same phase of the meter tend to be 
consistent, the voltage measurement values of the monitored meter are close to those of 
other meters in the same box and phase. Therefore, a linear regression model for the 
neighbouring voltage comparison at zero crossing is selected. Determine the voltage 
measurement error of the electric energy meter by performing linear regression (Wang 
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and Ouyang (2022; Wen et al., 2022; Ding et al., 2022) with the voltage curve of the 
same box and same phase electric energy meter, as shown in equations (7) and (8) 

 

u u uy x= β  (7) 

( )1 / 100%u u uε β= − ⋅β  (8) 

In the formula, xu is the voltage measurement value of adjacent reference energy meter A; 
Yu is the voltage measurement value of the energy meter B that needs to be compared; β 
U is the estimated value of linear regression parameters for voltage data; ε U is the 
voltage measurement error of the energy meter B; Using xu as the independent variable 
and yu as the dependent variable, perform linear regression when accumulating enough 
measurement samples βu. Thus, the voltage measurement error of the energy meter can be 
calculated εu (Zhu et al., 2009). 

Step (9): The electric energy meter with abnormal current is located using the zero 
line current analysis method. In the standardised connection method of intelligent electric 
energy meters, the electric energy meter and the load are connected in series through the 
live line and zero line, so the zero line current measurement values tend to be consistent. 
Using the zero line current of a single-phase meter as a reference standard (Dong, 2007), 
construct a linear regression model for zero and live line analysis of zero crossing. The 
model is as follows: 

1 I Iy x= β  (9) 

In the formula, xI is the measured value of the zero line current as the independent 
variable; YI is the measured value of the live wire current as the dependent variable. 
When accumulating enough samples, solve through linear regression βI parameter 
estimate. Current measurement error εI is 

( )1 / 100%I I Iε = − ⋅β β  (10) 

Evaluate the operation status of the metering chip, voltage sampling element (Gao et al., 
2006), and current sampling element of the energy meter, reduce the estimation of the 
energy meter state from the meter level to the element level, and provide an effective 
online monitoring method for the low voltage side operation status. 

The article focuses on the operation status of energy meters for high supply and low 
metering enterprise users. On the medium voltage side, with complete power supply data 
at each measuring point on the line, regression analysis can be used to locate inaccurate 
energy meters using line side energy balance. However, in the actual application process, 
the measurement points on the line side and user side are managed by different business 
systems, and there are issues with data synchronisation and integrity, as well as 
professional barriers in business control. Therefore, the article proposes an online 
monitoring method for the operation status of the medium voltage side based on the 
external characteristics of the transformer, which only uses the user side measurement 
data to locate the inaccurate energy meter, and has strong practicality (Zhang et al., 
2004). 

The external characteristics of a transformer refer to the obvious pattern of the 
voltage on the low-voltage side of the transformer changing with the load. Equivalent the 
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transformer to a T-shaped circuit (Wen et al., 2022), with Rm and Xm as excitation 
impedances (Zhang, 2004); Rh and Xh are the leakage impedances on the high-voltage 
side; Rl and Xl are the leakage impedances on the low-voltage side. Due to the much 
smaller excitation current than the user’s normal load current, the impact on the line 
voltage drop is very small. Rm and Xm are ignored, and Rt and Xt are used to represent 
the sum of the corresponding impedances Rh, Xh, Rl, and Xl, respectively. Given the 
transformer capacity, Rt and Xt can be inferred based on the transformer model 
parameters. Set the high voltage side voltage to Ea, Eb, Ec, and combine it with on-site 
wiring to obtain the three-phase equivalent circuit for high supply and low supply special 
transformer users, as shown in Figure 4. 

Figure 4 Three-phase equivalent circuit for high supply and low metering special transformer 
users 

 

2.3 Holt winters model 

The Holt Winters model, also known as the cubic exponential smoothing model, adds a 
seasonal term on top of the horizontal term in the primary exponential smoothing method 
and the trend term in the secondary exponential smoothing method. The Holt Winters 
model includes two types: addition model and multiplication model. The selection of the 
two models mainly depends on whether the trend of the data varies seasonally by addition 
or multiplication. The addition Holt Winters model data is overlaid in addition form, and 
the formula is as follows: 

( ) ( )1 1(1 )i i i T i iu α x S u v− − −= − + − +α  (11) 

( )1 1(1 )i i i iv u u v− −= − + −β β  (12) 

( ) (1 )i i i i TS γ x u γ S −= − + −  (13) 

In the equation α, β, γ. The smoothing coefficients for the horizontal term, trend term, 
and seasonal term are all within the range of [0, 1], which are the balance weights 
between the predicted values of the model and the measured inverse values; Si is the 
exponential smoothing value of the i-th season term, and T is the length of the season 
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cycle; Vi is the exponential smoothing value of the i-th trend term; Ui is the exponential 
smoothing value for the i-th period. The prediction formula for xi is the actual value of 
the i-th period, as follows 

ˆi h i i i T hx u hv S+ − += + +  (14) 

Among, ˆi hx +  is the predicted value for the i + h period, h is the number of backward 
smoothing periods, and h > 0. 

The network structure of BP neural network mainly includes three parts: input layer, 
hidden layer, and output layer. If the number of input neurons in the network is M and the 
number of output neurons is N, then the neural network structure can be regarded as a 
mapping from an M-dimensional Euclidean space to an N-dimensional Euclidean space. 
The training process of BP neural network is to send the values of the previous layer to 
the next layer through weighted averaging, and then transmit them to the output layer. 
The resulting error is then transmitted to the previous layer, and finally the weighted 
average is recalculated. After repeated training, the error is reduced until the set error is 
met. 

The steps of BP neural network prediction are as follows:  

1 Import monthly fault energy meter data and determine the number of nodes. 
Reasonably divide the given historical data, determine the input and output parts of 
the data, and then determine the number of input neurons and output neurons 

2 Determine the number of hidden layer neurons. 

The selection of the number of hidden layer neurons has a significant impact on the 
prediction performance of BP neural networks. The number of hidden layer neurons 
should be selected within an appropriate range. If there are too many neurons, it will 
cause excessive data fitting and increase the computational workload; A small number 
of neurons can lead to poor prediction performance. The number of hidden layer 
nodes in BP neural networks is not only affected by the number of input and output 
nodes, but also by the actual complexity of the problem itself and the expected error 
set. When selecting the number of neurons in the hidden layer, the number of neurons 
in the hidden layer should be 2–3 times that of the input layer or selected based on 
empirical formulas in literature, as follows: 

L M N A= + +  (15) 

In the formula, M is the number of input layer nodes; N is the number of output layer 
nodes; L is the number of hidden layer neurons; A is a constant between [1, 10];  

3 Determine the training function. Use MATLAB’s neural network toolbox for network 
training. 

In 1985, Powell proposed the radial basis function (RBF) for multivariate interpolation. 
The RBF neural network consists of three parts: input layer, intermediate layer, and 
output layer. The first layer is the input layer composed of the input signal source, which 
is a linear function; The second layer is the hidden layer, which is a nonlinear function. 
The number of hidden elements in the hidden layer is determined by the model problem; 
The third layer is the output layer, which is a linear function and responds to the input 
signal. The RBF neural network model is shown in Figure 5. 
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Figure 5 RBF neural network model diagram 

 

RBF neural network sends linear input vectors to the hidden layer, uses the hidden layer 
to transfer data from low-dimensional space to high-dimensional space, making it linearly 
separable in high-dimensional space, and finally sends it to the output layer through 
linear weighting. RBF neural network is a feedforward neural network that, due to its 
linear output and relatively easy parameter adjustment, does not have local optimisation 
problems. Therefore, RBF neural networks have advantages such as optimal 
approximation and global optimality. 

3 Experiment 

3.1 Example of reliability evaluation for intelligent energy meters 

Based on the actual operation and maintenance data of smart energy meters in a certain 
city, the effectiveness of the reliability evaluation model for smart energy meters 
proposed above was verified. The training samples in the experiment contain a total of 
49,640 maintenance data and abnormal data of smart energy meters. The dataset is 
divided into a training set Dtrain and a testing set Dtest in a 4:1 ratio, with the number of 
abnormal types N = 21. Hardware platform for the experiment: The operating system is 
Windows 8.1, the CPU is Core single core i5-5200 U, 2.20 GHz, and the code 
implementation is based on Python’s lifelines library package and TFDeepSurv library 
package. Input the training model shown in Figure 6 for training. 
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Figure 6 Model training flowchart 

 

The change trend of loss function during training is shown in Figure 7. The consistency 
index obtained on DTRAIN is about 0.682, and the consistency index obtained on Dtest 
is about 0.683. 

To represent the survival curves of the reliability evaluation model obtained under 
different covariate values, the covariate vectors X (1), X (2), X (3) are taken to 
investigate the impact of any anomaly corresponding to the covariate, such as anomaly 5, 
satisfying the constraints shown in equation (15) 

(1) (2) (3)
5 5 50.2 0.1x x x+ = + =  (15) 

The covariate components corresponding to other types of anomalies in X (1), X (2), and 
X (3) have the same values. When the covariate vectors obtained from the integration of 
multi-source big data of three different smart energy meters are X (1), X (2), and X (3), 
their corresponding survival probability curves are shown in Figure 7. It can be seen that 
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as the value of x(i) 5 increases, the survival probability of the corresponding intelligent 
energy meter individual i at the same time decreases, the reliability of the intelligent 
energy meter significantly decreases, and the likelihood of failure or replacement 
according to established strategies increases. The obtained reliability evaluation model, as 
an effective reliability evaluation model, can reflect the real-time health status of smart 
energy meters. On this basis, power grid operators establish an optimal operation and 
maintenance model for smart energy meters by comprehensively considering factors such 
as economic benefits of power grid operation and maintenance and replacement costs, 
and set input parameters according to work requirements to obtain the optimal strategy 
for smart energy meter operation and maintenance. 

Figure 7 Change of loss function during training (see online version for colours) 

 

In order to compare the advantages and disadvantages of different prediction methods, 
based on the relevant data of the same batch of smart energy meters, the component stress 
method was used to calculate their mean life before failure (MTTF), and the prior 
assumed reliability curve distribution function was used for parameter fitting to evaluate 
the reliability of smart energy meters, and compared with the established evaluation 
model. To evaluate the reliability of smart energy meters using the component stress 
method, a list of smart energy meter components needs to be obtained. Intelligent energy 
meters are generally considered as a simple series failure model, namely 

1

N

s i
i=

=λ λ  (16) 

Among λs Is the system failure rate (1/h), which is the failure rate of~N components 
(1/h). For a certain model of smart energy meter, by analysing the list of components on 
the smart energy meter motherboard and selecting JB/Z299C-2006 electronic equipment 
prediction manual, the system failure of the smart energy meter is calculated as λ S = 
7.881672 (10-6/h), then the average time before failure (MTTF) of the smart energy 
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meter is 1/λ S = 14.48 years. Assuming that the time failure rate relationship of smart 
energy meters follows a Weibull distribution, based on existing smart energy meter data, 
the maximum likelihood estimation method is used to obtain the reliability curve of the 
smart energy meter, as shown in Figure 9. 

Figure 8 Example of survival curves with different covariate values (see online version 
for colours) 

 

The above three methods have effectively evaluated the reliability of smart energy meters 
from three different perspectives, each with different criteria for judging their strengths 
and weaknesses, and cannot be uniformly measured using concepts such as accuracy and 
C – index. Therefore, comparisons are made from two aspects: the model’s generalisation 
ability and the interpretability of the results. In terms of generalisation ability, the 
component stress method needs to search for the corresponding failure rates in the 
component list and component manual of each type of smart energy meter. The resulting 
model changes with the replacement of smart energy meter components or component 
composition, resulting in poor generalisation ability. The parameter fitting method based 
on hypothesis distribution and the prediction method proposed in the article both rely on 
the selected intelligent energy meter fault data samples for training, and the 
generalisation ability of the model depends more on the sample quality. In terms of 
interpretability of prediction results, the component stress method can analyse the failure 
of key components inside smart energy meters, and establish a series relationship 
between micro component failure and functional failure. However, when a smart 
electricity meter malfunctions, it often manifests as the failure of a certain functional 
module, making it difficult to locate a specific component, and the obtained MTTF is a 
certain value, which has limited guiding significance for the operation and maintenance 
of smart electricity meters. However, assuming the reliability distribution of smart energy 
meters in advance and using data to fit model parameters using empirical assumptions 
cannot correspond to the endogenous or exogenous reliability impact factors of smart 
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energy meters, resulting in poor interpretability of the evaluation curve. The reliability 
evaluation model established in the article, which considers the influence of multiple 
covariates, can be strengthened and maintained by analysing the impact of a single 
covariate on the survival probability curve. 

Figure 9 Survival function based on Weibull distribution fitting (see online version for colours) 

 

Figure 10 Distribution of energy meters in the meter box 

 

3.2 Example analysis 

To verify the effectiveness of the method proposed in the article in solving the operating 
states of different levels of electricity meters, multiple instances were modelled and 
solved. The computer used is Inter (R) Core (TM) CPU I5-3470 3.20 GHz, 4 GB of 
memory, and programming languages are Python and GAMS23.9 
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Use the component comparison method in Part 1 to analyse the actual meter box in a 
certain community. This meter box has a total of 15 A, B, and C three-phase energy 
meters, with 5 for each phase. The distribution diagram inside the meter box is shown in 
Figure 10. 

Figure 11 Linear regression results between user # A5 and user # A1 

 

According to the analysis of the main station of the collection system, the communication 
between the main CPU of the energy meter under the meter box and the metering chip is 
good and in normal operation. Using the neighbouring voltage comparison method, the 
voltage of the same box and same phase electric energy meter in the substation area is 
respectively substituted into equation (1) for linear regression, and the zero live line 
current of the electric energy meter in the box is substituted into equation (3) for linear 
regression. The single-phase user # A5 is located with current anomalies and no voltage 
anomalies, and it is determined that there is metering error in the current sampling 
channel component. The calculation process is as follows. Take the 96 point voltage 
curve of 5 A-phase energy meters in the meter box as input samples. 

Perform linear regression between user # A5 voltage amplitude and other energy 
meters in the same box and phase. Taking # A1 as an example, the results of linear 
regression are shown in Figure 11. 

By analogy, perform linear regression on the voltage curves of users # A5 and users # 
A1~# A4 in the same box, and the calculation results of the regression coefficients are 
shown in Table 1. Analysis shows that the voltage component of user # A5 electricity 
meter is in normal metering state. 
Table 1 Calculation results of adjacent voltage comparison method for user # A5 

 #A1 #A2 #A3 #A4 
#A5 1.0002 0.9998 1.0001 1.0002 
εu  –0.02% 0.02% –0.01% 0.01% 
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Similarly, the zero line current analysis method was used to perform linear regression on 
10 samples collected on the same day and at the same time. The regression coefficient 
was calculated to be 0.9623, and the current measurement error was 3.92%. The accuracy 
level corresponding to the 220 V single-phase electrical energy metering device is 
required to be 2% as the allowable error range of the energy meter (Feng et al., 2022). 
Therefore, the current measurement error of 3.92% exceeds the allowable error range of 
the energy meter. Based on the above analysis, there is a measurement inaccuracy in the 
current sampling element of the electricity meter corresponding to user # A. 

3.3 Shapley combination model 

This section discusses the prediction methods based on the Shapley combination model 
mentioned above. 

Analyse the effectiveness. This data is presented in Yang et al. (2022a) and Based on 
the data, obtained through sample expansion. The original data series of monthly fault 
demand for single-phase meters used from 2017 to 2022 are shown in Table 2. 
Table 2 Impact of the number of hidden layer nodes on the prediction results of BP neural 

network 

Number of hidden 
layer nodes 8 9 10 11 12 

actual error 0.00123 0. 00122 0.00163 0．00142 0．00132 
Maximum mean 
square error (mse) 

2.70 × 10 － 4 6．08 × 
10 － 4 

7． 30 × 10 
－ 4 

4．69 × 10 
－ 4 

4． 53 × 
10 － 4 

Figure 12 Prediction effect of Holt Winters model (see online version for colours) 

 

Prepare monthly single-phase electricity meter data from 2017 to 2022. 
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Forecast the monthly demand for single-phase electricity meters in 2022. The fitting 
prediction effect of the Holt Winters model is shown in Figure 12, where the abscissa 
represents the data for each month of 60 months; The vertical axis represents the number 
of electricity meters required. By comparing the predicted results of the Holt Winters 
model with the actual data of single-phase electricity meters in 2022, the prediction error 
of the Holt Winters model can be calculated. 

The calculation method for prediction error is: prediction error=| predicted value – 
actual value |/actual value × 100%. 

Compile monthly single-phase fault energy meter data from 2017 to 2022. 
Train for the training set. Select the data from the first four years to predict the data 

for the fifth year, and use the 2022 data as the test set for comparison. In the BP neural 
network, four neurons are set in the input layer and one neuron in the output layer, with a 
training frequency of 20 times and a performance index error of 0.002. Select default 
values for other parameters (weights and thresholds). Randomly select the initial 
parameters used to train the BP neural network. Use BP neural network to fit the curve, 
find the relationship between input and output values, and iteratively optimise until one 
of the preset conditions is met to stop training. The impact of the number of nodes in the 
hidden layer on the prediction results of the BP neural network is shown in Table 2. 
Randomly select the initial parameters used to train the BP neural network. Use BP 
neural network to fit the curve, find the relationship between input and output values, and 
iteratively optimise until one of the preset conditions is met to stop training. The impact 
of the number of nodes in the hidden layer on the prediction results of the BP neural 
network is shown in Table 2. Among them, mse is the mean square error, which is the 
expected value of the square of the difference between the estimated value of the 
parameter and the true value of the parameter. According to Table 2, in order to reach a 
compromise between overfitting and prediction accuracy, the paper selects 11 hidden 
layer nodes. 

4 Conclusions 

Based on the multi-source big data of smart energy meters, a reliability evaluation model 
for smart energy meters was established by integrating and analysing the maintenance 
data and abnormal data of smart energy meters. The CoxPH model combined with deep 
learning was used to fit the multi-source data for fusion analysis, and a lifespan survival 
probability model for intelligent energy meters was obtained. The Holt Winters model, 
BP neural network model, and RBF neural network model were used to fit and predict the 
monthly electricity meter demand, and compared with the actual value of the monthly 
electricity meter. Then, the Shapley combination model method was used for 
combination modelling. Due to the large prediction deviation of the Holt Winters model, 
a combination model was constructed using BP neural network and RBF neural network, 
and the demand for electricity meters was predicted based on the combination model. 
Verified the advantages of fast convergence and high accuracy of the proposed method; 
And finally, the conversion relationship curve between the measurement error of the 
electric energy meter under on-site working conditions and the measurement error under 
laboratory reference conditions was provided. The measurement error of the electric 
energy meter was divided and the electric energy meters with larger measurement errors 
were selected, which helps to improve the error verification work of the electric energy 
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meters operating on the grid and can predict the out of tolerance failure of the measuring 
equipment in on-site operation in advance, Helps to improve the inspection efficiency of 
metering errors in electric energy meters operating on the grid. 
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