Comparison between variable forcing techniques of the lattice Boltzmann method for turbulent flow simulations Online publication date: Thu, 16-Nov-2023
by Waleed Abdel Kareem; Hadeer Mohamed
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 23, No. 6, 2023
Abstract: A comparison between different forcing techniques of the lattice Boltzmann method (LBM) is carried out for isotropic turbulence with resolutions of 1283 and 2563, respectively. Four forcing techniques are investigated with the lattice Boltzmann D3Q19 model. Few forcing methods were suggested to add a force term to the lattice Boltzmann method (LBM) but they are neither tested nor compared for box turbulence. The first technique is performed by adding the constant force randomly to the collision term. The second is depending on shifting the velocity field. The third technique is achieved by adding the force to the collision term with shifting the velocity field. The fourth technique considered the discrete lattice effects where a forcing function with consistent moments of the hydrodynamics equations is added to the collision operator with shifting the velocity field. Results show that the obtained turbulent velocity fields yield universal characteristics similar to previous studies.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com