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Abstract: In this study, rainfall patterns are depicted using 16 regional climate 
models of seasonal monsoon across the Mahanadi Reservoir Project (MRP) 
Complex region from 1980 to 2005. Bias correction and different statistical 
analyses were used to evaluate the model’s degree of uncertainty and model 
performance with the relevant observations, respectively. The purpose of this 
study is to: 1) compare the capability of regional climate models (RCMs) in 
reproducing seasonal monsoons; 2) climate change impact in the near future 
(2021–2046), mid-future (2047–2072), and far-future (2073–2098) over the 
study area. The seasonal monsoon rainfall under two different RCPs  
(RCP 4.5 and 8.5) was used to test the experiments and data’s ability. Among 
16 Coordinated Regional Climatic Downscaling Experiment (CORDEX) 
models, the REgional MOdel (REMO 2009) has a higher R2 (i.e., 0.610). 
Therefore, such studies assist to analyse the impact of monsoon rainfall on 
different sectors and responding to climate change. 

Keywords: CORDEX-South Asia; MRP complex; regional climate model; 
RCM; bias correction; statistical analysis. 
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1 Introduction 

For water assets, the data about water accessibility, water quality, and amount are of the 
most extreme significance for the present just as well as the future. Nearly every country 
in the world should foresee a net negative effect of environmental change on their water 
assets and biological freshwater systems. Precipitation is exceptionally uneven in space 
and time. The most elevated, rainfall-getting district on the planet is northeastern India, 
unlike the Thar Desert in western India. In contrast to the most recent 100 years, 
precipitation and temperature changes in India from 2000 to 2015 have been notable 
(Goyal and Surampalli, 2018). In comparison, the direct dangers of environmental change 
impact agribusiness, fisheries, health, and water protection in different regions of the 
world as well as the travel industry. Therefore, the preparation and monitoring of these 
events are essential for future strategy creation, supply operations, asset management, and 
environmental change assessments. 

Climate models are essential for improving our understanding and consistency of 
conducting the atmosphere regularly on annual, decadal, and centennial time scales. 
Models are examining how often observed changes in the environment could be due to 
natural changeability, human activity, or a combination of both. Their outcomes and 
forecasts provide simple data to more readily educate choices about regional, local, and 
nearby importance, such as executive water properties, agribusiness, transportation, and 
urban planning. These days, numerous mainstream researchers are dynamically utilising 
different climate models to evaluate the Indian monsoon (Kumar et al., 2013). As a result, 
climate models are frequently employed to assess the existing and future effects of 
climate change on hydrology. The study of traditional climate–hydrology relationships 
serve as a guideline for future climate change scenarios and their implications for water 
resources development, making it increasingly important to make more reliable and exact 
predictions of climate variables (Smitha et al., 2018). Global and regional climate models 
(RCMs) are forerunners and powerful scientific tools for displaying climate and 
influencing environmental change assessments (Kumar and Dimri, 2018). The local 
models are tuned to speak to the present atmosphere as practically as could reasonably be 
expected to fabricate certainty for its ensuing use for tending to future projections under 
various environmental change scenarios. 
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A hindrance to the global climate models (GCMs) is their genuinely coarse horizontal 
resolution. For most impact studies, for example, assessment of flood risks or a few sorts 
of avalanches, dry seasons, and so forth, the general public requires data at a substantially 
more point-by-point nearby scale than given by GCMs. Hence, to examine climate 
assessments at a local scale, a high-resolution form of GCM is utilised, known as the 
RCM (Yang et al., 2020; Pastén-Zapata et al., 2020; Mendez et al., 2020; Laflamme  
et al., 2016). RCM is a supplement to GCM by further detailing global climate 
projections or contemplating atmospheric forms more detailed than GCMs permit. RCMs 
are created by settling a GCM into an RCM by utilising the horizontal boundary states of 
the GCM. RCMs are made through the dynamical downscaling of GCM yields (Seiler  
et al., 2018; Wu et al., 2017; Lucas-Picher et al., 2017; Prein et al., 2016; Eden et al., 
2012). RCMs downscale GCMs to a resolution of 50 km or less to provide a fine-scale 
depiction of a local climate (Choudhary et al., 2018). 

Recently, the Coordinated Regional Climatic Downscaling Experiment (CORDEX) 
project, an international collaborative effort, has given downscaled precipitation data for 
the past and future climate shifts, as well as a framework for evaluating models over East 
Asia (Giorgi et al., 2009). A number of prior studies have examined the performance of 
an individual RCM or an ensemble of RCMs in predicting East Asian precipitation 
patterns and extreme events (Huang et al., 2015; Park et al., 2016; Li et al., 2018). 
Extreme precipitation in China and East Asia has been replicated by RCMs despite 
systemic bias in mean and extreme precipitation (Park et al., 2016; Li et al., 2018). 

As previously stated, the RCM model is employed in this study to downscale rainfall 
simulations over the CORDEX South Asia region. As a result, the RCM model outputs 
will be generated and referred to as ‘model scenario outputs’ in the future. The historical 
tests were carried out from 1980 to 2005, and the forecasts were carried out from 2006 to 
2100 using Representative Concentration Pathways Scenarios (Van Vuuren et al., 2011a). 
The RCPs are the result of a novel combination of integrated assessment modellers, 
climate modellers, terrestrial ecosystem modellers, and emission inventory experts  
(Van Vuuren et al., 2011a). In this study, two RCP scenarios are used, which are called 
after the radiative forcing target level for 2100: RCP4.5 (Thomson et al., 2011) and 
RCP8.5 (Riahi et al., 2011). Towards the inner model domain, the global data is reduced 
exponentially as it approaches the domain’s lateral boundaries. Using a hybrid vertical 
coordinate system, the horizontal target resolution is 0.44 x 0.44 on a regular grid. The 
observed and predicted GHG concentration time series are fed into the regional historical 
and RCP simulations. In the regional experiments, ozone and aerosols are not taken into 
account, and natural climatic forces are constant (Fotso-Nguemo et al., 2017). 

Many researchers have studied the CORDEX model ability to simulate rainfall 
characteristics. Mutayoba and Kashaigili (2017) examined CORDEX RCM ability to 
simulate rainfall patterns across Mbarali River basin and it is recommended that for the 
coming study, for impact studies, it is critical that the RCMs and their ensemble mean be 
corrected using bias correction techniques. Sannan et al. (2020) included 10 CORDEX-
SA RCMs in the analysis; Rai et al. (2019) included 5 CORDEX-SA RCMs in the 
analysis; Saranya and Nair Vinish (2021) include 5 GCM-RCM combinations selected 
from CORDEX-SA datasets over a humid tropical river basin in Kerala, India. Now, in 
the present study, we have included all the CORDEX-SA ensembles available on the  
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CORDEX South Asia Database, CCCR, and IITM (http://cccr.tropmet.res.in/cordex 
/files/downloads.jsp). The list of CORDEX South Asia Experiments used in this study is 
presented in Table 1. Therefore, the main advantage of this study, it is an applied-based 
research work that tends to assess/examine MRP Complex, which on the other hand, 
reacts as a lifeline of the Chhattisgarh state. Furthermore, this technique/model output is 
more robust compared to others and could give satisfactory recommendations to the 
policy-makers and stakeholders associated with the water management and planning unit. 

The detailed objective of this study is to: 

1 Examine the ability of experiments and data to replicate the characteristics of 
summer monsoon precipitation in the MRP Complex region under two different 
greenhouse gas emission scenarios Representative Concentration Pathways 4.5 and 
RCP 8.5 throughout three-time scales (2021–2046), (2047–2072), and (2073–2098). 
The experiment of Coordinated Regional Climate Downscaling Experiments in 
South Asia (CORDEX-SA) is used to judge precipitation meteorology over the 
Mahanadi reservoir project complex, Chhattisgarh. 

2 To investigate the potential precipitation variation over the baseline period using 
CORDEX climate data and performs a time series analysis of the simulated rainfall 
data from CORDEX. 

3 To detect the change point of future RCM scenario. 

4 To examine the magnitude and pattern of trend during 2021–2098. 

The purpose of this work is to investigate the ability of the REMO model to capture 
fundamental meteorological phenomena, such as the monsoon rainfall, as well as to 
provide guidelines for the interpretation of climate change. This manuscript is provided 
as follows: Sections 2 and 3 explain the study area and data used. Section 4 describes the 
methodology adopted for the entire study. Section 5 addresses the discussion about how 
rainfall patterns may vary in the future climate along with change point detection as well 
as model comparison. Section 6 contains a conclusion. 

2 Study area 

The Mahanadi is a major river that originates in the Dhamtari region of Chhattisgarh and 
drains into the Bay of Bengal. From its source to its drainage into the Bay of Bengal, the 
overall river length is 851 kilometres (Sahu et al., 2021a; Verma et al., 2022b). The MRP 
complex is located in the upper Mahanadi basin (UMB), drained by the Sheonath River. 
The area of UMB is around 29,796.65 sq. km. The MRP Complex in UMB consists of 9 
rain gauge stations that are shown in Figure 1. With summer temperatures of about 29ºC 
and winter temperatures of 21ºC, the climate in the Mahanadi River region is 
predominantly sub-tropical. Most of the precipitation is from July to September [800 to 
over 1200 mm] and less than 50 mm from January to February (Panda et al., 2013; Sahu 
et al., 2021b, 2021d; Dhiwar et al., 2022). 
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Figure 1 Study area map (see online version for colours) 

 

 

3 Data used 

In the present study, in order to present the local climate change scenarios, the 
Coordinated Regional Climate Downscaling Experiment has been incorporated. They 
were funded by the World Climate Research Program to develop an improved version of 
local climate change projections for impact assessment and adaptation studies (Ghimire 
et al., 2018). Various modelling organisations worldwide have created the data structure 
for various experiments, consequently, their grid and structural format are distinct. The 
CORDEX vision is to progress and coordinate the science and use of regional climate 
downscaling through worldwide associations (Giorgi and Gutowski, 2015). The 
CORDEX RCM Simulations Precipitation Dataset is available on the Earth System and 
Grid Federation (ESGF) portal in NetCDF format, which is available on (https://esgf-
data.dkrz.de/search/cordex-dkrz/) and a summary of RCMs used in this study is presented 
in Table 1. The water resource department of Chhattisgarh provides in-situ measurements 
that are used to evaluate the models. From 1980 to 2005, the daily precipitation measured 
at 13 meteorological stations was used (refer to Table 2). These meteorological stations 
are largely concentrated in the eastern part of the Mahanadi River basin, the MRP 
Complex region (see Figure 1). For data quality control, a standard normal homogeneity 
test is performed. This data is reliable and has been widely utilised to identify climate 
change and validate climate models. 
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Table 1 List of 16 CORDEX South Asia Experiments details 

CORDEX-SA RCM RCM details Influencing CMIP5 GCM Acronyms 
IITM-RegCM4 The Abdus Salam 

International Centre for 
Theoretical Physics 

(ICTP) (Giorgi et al., 
2012) 

Centre for Climate Change 
Research (CCCR), Indian 

Institute of Tropical 
Meteorology (IITM), India 

CanESM2 
GFDL-ESM2M 

CNRM-CM5 
MPI-ESM-MR 

IPSL-CM5A-LR 
CSIRO-Mk3.6 

SMHI-RCA4 Rossby Centre regional 
atmospheric model 
version 4 (RCA4) 
(Jones et al., 2011) 

Rossy Centre, Swedish 
Meteorological and 

Hydrological Institute 
(SMHI), Sweden 

EC-EARTH 
MIROC5 

HadGEM2-ES 
CanESM2 

GFDL-ESM2M 
CNRM-CM5 
MPI-ESM-LR 

IPSL-CM5A-MR 
CSIRO-Mk3.6 

MPI-CSC-REMO 
2009 

MPI REgional MOdel 
(Teichmann et al., 

2013) 

Climate Service Center 
(CSC), Germany 

MPI-ESM-LR 

Source: CORDEX South Asia Database, CCCR, IITM 
http://cccr.tropmet.res.in/cordex/files/downloads. jsp 

Table 2 Name of rain gauge stations and their locations 

Stations Latitude (N) Longitude (E) 
Birgudi 20.30 81.87 
Chatti 20.78 81.67 
Dudhawa 20.18 81.46 
Gangrel 20.633 81.566 
Dhamtari 20.822 81.522 
Khajrawan Kanker 20.30 81.75 
Murumsilli 20.533 81.666 
Rudri 20.633 81.566 
Sondur 20.233 82.10 

4 Methodology 

It is necessary to first topographically correct and then compares gridded simulations to 
the observations made at the observation stations. A number of statistical tests are used to 
analyse the correlation between simulated and observed results, including the  
Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), and the Taylor 
Diagram. The modified Mann-Kendall test is used to identify the trend pattern, and the 
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Pettit test is being used to examine the change point detection. Apart from that, the bias 
correction of climate models and methods used for bias correction techniques were 
discussed in Section 4.1 and the methodology flow chart is presented in Figure 2. 

Figure 2 Methodology flow chart (see online version for colours) 
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4.1 Bias correction of climate model 

Biases are systemic errors caused by climate models and algorithms of estimation used in 
remote sensing i.e., inaccuracy within the system (Heo et al., 2019; Ehret et al., 2012). 
Broadly defined, bias can be described as the degree to which a mean forecast and a 
mean observation have an average correlation throughout time and space. Bias is used for 
an error in average precipitation. Bias is the proportional difference between the mean 
simulated output and the mean observed value over a given period. Here we focus on 
minimising or removing the bias of precipitation (Bennett et al., 2013). Mathematically 
expressed as: 

100%RCM obs
R

obs

R RB
R

−= ×  (1) 

BR is biased, RRCM is the mean precipitation of simulated model output, and Robs is the 
mean of observed precipitation values. Often, when simulating the present-day 
atmosphere, compared to GCM forcing, in RCM, internal model processes are just as 
important as external ones, developing biases in climatological estimation (Gao et al., 
2012). Examples of bias correction techniques include linear scaling, delta change 
method, modified delta change method, and quantile mapping (Gutmann et al., 2014). 

4.1.1 Quantile mapping 
It is a non-parametric bias correction technique. The statistical relationship between the 
simulated observed outputs and the model by replacing the simulated values with those 
observed at the same cumulative density function of the used distribution depends on the 
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climate variable (Cannon et al., 2015). Quantile mapping (QM) used a transfer function 
to compute the cumulative distribution function (CDF) of simulated model output and 
observed data, known as quantile mapping. Thus, the CDF of the corrected model is 
converted to match that of the data observed (Ayugi et al., 2020; Sahu et al., 2022). The 
QM is mathematically constructed as follows: 

{ }1( ) ( )m obs RCM RCMY t F F Y t−  =    (2) 

where Ym(t) is the bias-corrected data, YRCM(t) is model-simulated data during some 
projected period and FRCM and Fobs–1 the cumulative distribution function of RCM raw 
model data, is the inverse CDF (or quantile function) of the data observed. 

The probability allocation of the concern variable for a future time is challenging to 
obtain. Future projected data is limited in evaluating climate change predictions 
(Gudmundsson et al., 2012). The quantile mapping approach has the advantage of 
representing RCM bias in every statistical moment. However, similar to all statistical 
downscaling approaches, it is assumed that bias related to observed historical data is 
consistent throughout the projections (Thrasher et al., 2012). For QM, the likelihood 
distribution models of observed and simulated data are necessary. Henceforth, it is 
important to choose a proper probability distribution model to implement the QM method 
effectively. The Gamma distribution has been utilised for the probability distribution of 
precipitation (Jeon et al., 2016). 

The gamma distribution for precipitation used in this study is given by: 

{ }1 ( ) ,
( )

0,
RCM RCM RCM thobs

m
RCM th

F F Y t Y Y
Y t

Y Y

−   ≥  = 
<

 (3) 

Y is the climate variable; the threshold value of the wet and dry days is Yth. 

4.1.2 Linear scaling 
The precipitation is a multiplicative correction that aims to match the model and observed 
data by correcting biases in the mean. It does not take into account biases in the variance, 
and the correction for rainfall is: 

,
mod, ,

,
, , * obs b

a b raw
raw b

yy y scen a b
y

= −  (4) 

where ymod,a,b is bias modified value of ath day of bth month, yraw – scen,a,b is the raw 
precipitation of scenario of ath day of bth month, ,obs by  is the mean of the observed value 

of precipitation of bth month and ,raw by  is the mean of raw precipitation of bth month. 

4.1.3 Delta change method 
It is a common method that is similar to linear scaling, except that the control period, 
called a ‘hindcast’, is put on top of the observational time series. This means that the 
control period affects the observational time series: 

, ,, ,raw obs a by hist a b y− =  (5) 
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yobs,a,b is observed time series of precipitation of ath day of bth month and yraw – hist, a, b is 
the historical precipitation of the model corresponding to ath day of bth month. Then the 
bias-adjusted rainfall for a scenario is of the multiplicative form described below. 

,
mod, ,

,
, , * obs b

a b raw
raw b

yy y hist a b
y

= −  (6) 

4.1.4 Modified delta change method 
A nonlinear transformation of historical precipitation data consists of the modified delta 
change method. The modified delta change method looks at changes in both average and 
extreme values to find the climate signal from climate model outputs. This is different 
from just looking at changes in the mean. 

* for,bP aP P Q= ≤  (7) 

* ( ) for,b F CP aQ E E P Q P Q= + − >  (8) 

where Q is a large quantile, EC is the mean excess over the quantile Q in the Control 
climate and EF is the same for the future climate coefficients a and b following from 
future changes in, e.g., P0.60 and P0.90. 

4.2 Performance of bias correction method 

Statistical indices such as coefficient of determination (R2) and Nash Sutcliffe efficiency 
(NSE) are used to evaluate the performance of the bias correction technique. The 
exactness of predictive models is essential because predictive models have been utilised 
across different disciplines, and predictive precision decides the quality of resultant 
predictions. Additionally, model execution is evaluated by comparing model values to 
observed values. In this study, it is inferred that REgional MOdel (REMO 2009) gives 
better simulations as compared to other RCMs. 

4.3 Performance evaluations 

For the evaluations of model performance certain statistical measures such as coefficient 
of determination (R2), Nash Sutcliffe Efficiency (NSE), and RMSE are used and defined 
as follows: 

4.3.1 Coefficient of determination 
Examining statistical relationships between two variables is known as the Coefficient of 
Determination. It tells the linear relationship between two variables based on a 
correlation coefficient formula (Zhang, 2017). 

( ) ( ) ( )( )
( ) ( )

2

2 2 2 2( ) ( )

n xy x y
R

n x x n y y

−
=

   − −   

  
   

 (9) 
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R2 examines how another may explain discrepancies in one variable. The value of R2 
varies from 0 and 1. If the value of R2 is equal to 1, then the data observed and the data 
from the model are perfectly balanced. If R2 is 0, the correlation between observed and 
model data is weak. 

4.3.2 Nash Sutcliffe efficiency 
The correctness of model outputs can be evaluated using the Nash-Sutcliffe performance. 
Nash-Sutcliffe efficiency illustrates how well the 1:1 line fits the plot of observed results 
against simulations (McCuen et al., 2006). As illustrated in the following equation,  
Nash-Sutcliffe efficiency is calculated: 

( )

( )

2

1
2

0

1

n
i ii

n
ii

O S
NSE

O O
=

=

−
= −

−




 (10) 

If Oi refers to observed data, Si represents the simulated model output value, and O  is the 
mean value of the observation data. The performance of NSE varies from –∞ to 1. The 
closer to 1, the more precise the model. According to the model, the observed data mean 
is entirely consistent with the model predictions if NSE = 0, and If NSE > 0, the 
empirical mean is a stronger predictor. 

4.3.3 Root mean square error 
In order to determine the discrepancy between actual and predicted values, the RMSE is 
employed. The simulated or model data output is less than the RMSE value (Chai and 
Draxler, 2014). It is determined using the formula below: 

( )
1

n
i ii

Y X
RMSE

n
=

−
=   (11) 

where Yi is the simulated data of the model and Xi is observed. 

4.4 Time series analysis 

This analysis is performed on the simulated data of CORDEX projections to understand 
the behaviour of the data. The simulated data has a span of 78 years, ranging from 2021 
to 2098. The non-parametric statistics test is performed on data to observe its trend and 
change-point on an annual scale (Das et al., 2014; Verma et al., 2021). The test 
performed is the Modified Mann-Kendall Trend test to detect a trend and Sen’s slope test 
for estimating the slope of the regression line along with Pettitt’s change point test to 
detect the change in trend. 

4.4.1 Modified Mann-Kendall test and Sen’s slope estimator 
The Modified Mann-Kendall test is a robust non-parametric test that can be used for all 
distributions. It can be used to identify long-term patterns in time-series data. The test 
works on two hypotheses: the null hypothesis (Ho) for this examination. The series does 



   

 

   

   
 

   

   

 

   

    A framework for the evaluation of MRP complex precipitation 27    
 

    
 
 

   

   
 

   

   

 

   

       
 

not have a monotonic pattern, and the alternative hypothesis (Ha) is a trend. Positive, 
negative, or non-null may be the pattern. x1, x2, x3, ......, xn the change version of Mann 
Kendall takes a look at which is strong within the autocorrelational relationship may 
exist, supported the changed variance of S is given by equation (12) and equation (14) 
(Hamed and Rao, 1998; Verma et al., 2022a; Sahu et al., 2021c). 

( ) ( )
2( ) kl ij klij a a aVar S E S E i j k l S i j k l E = = < < = < <    (12) 

and ( )ij kla aE  is given by equation (13) 

( ) ( )12 sinij kl ijkla aE r
π

−=  (13) 

the variance (S) is given as: 

* *
( 1)(2 5)*( ) var( )

18S S

n n n n nV S S
n n

− += ⋅ =  (14) 

where 
*
S

n
n

 is considered due to auto-correlation correction in the data and the statistically 

relevant pattern is calculated using the following test statistics: 

1 0
*( )

0 0
1 0

*( )

S if S
V S

Z if S
S if S
V S

− >
= =
 + <


 (15) 

A positive value (negative) of Z implies a pattern that is increasing (decreasing). 
Checking at a degree of significance, Ho is rejected for either an upward or downward 
monotonous trend. If Z is bigger than Z1-α/2, as determined by the normal cumulative 
distribution tables. In addition, a simple non-parametric technique generated by Sen 
(1968) evaluated the magnitude of a time series pattern. 

,j ix x
T Median j I

j i
− = > − 

 (16) 

where T is the Sen slope estimate. In the time series, T > 0 shows an upward trend. 
Otherwise, over time, the data series presents a downward trend. 

4.4.2 Pettitt’s change point tests 
The methodology is generally used with continuous data to detect a change point in the 
hydrological or climate series. It tests the null hypothesis (Ho) (Pettitt, 1979; Azharuddin 
et al., 2022; Pradhan et al., 2022). A change-point exists in the P variables with the same 
position parameter after one or more distributions, against the alternate hypothesis (Ha). 
The non-parametric statistics are described as follows: 

,max ,T t TK U=  (17) 
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( ), 1 1

t T
t T i ji j t

U Sgn x x
= = +

= −   (18) 

If the statistics are relevant, the series change-point is KT. KT has approximated 
significance of 5% with, 

2

3 2
62exp TKp

T T
− ≅  

 + 
 (19) 

5 Results and discussion 

5.1 Results of RCMs 

In the present study 16, CORDEX experiments were selected, and their ensemble and 
accompanying observations are plotted annually from 1980 to 2005, as shown in  
Figure 3. According to Figure 3, the REgional MOdel (REMO 2009) performs well as 
compared to other CORDEX climate models. However, the coefficient of determination 
for REgional MOdel (REMO 2009) is around 0.610, which is acceptable compared to  
other climate models (refer to Table 3). The same procedure applies to all rain gauge 
stations in the MRP Complex Region, Chhattisgarh, except the Dhamtari station 
coefficient of determination for REgional MOdel (REMO 2009) is around 0.665 (Refer 
to Table 3). Therefore, rest of the study, we choose the Dhamtari location as a reference 
station. The annual percentage change in observed rainfall is shown in Table 4. 
According to Table 4, the rainfall in a succeeding year is minimum for Dhamtari and 
Murumsilli around 3.55% and 2.88%, respectively whereas, Sondur and Birgudi stations 
have a maximum annual percentage change of rainfall i.e., 73.01 and 44.63. 

Figure 3 The annual precipitation plot from the 16 CORDEX experiments, their ensembles, and 
related observations from 1980–2005 (see online version for colours) 
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Table 3 Shows the coefficient of determination (R2) of 16 CORDEX-SA climate models for 
the Dhamtari stations over the study region 

Climate model Climate model 
group (R2) Climate model Climate model 

group (R2) 

MPI-ESM-LR REMO 0.610 CanESM2 IITM-RegCM4) 0.469 
CanESM2 SMHI-RCA4 0.332 CNRM-CM5 0.537 
CNRM-CM5 0.481 CSIRO-Mk3.6 0.561 
CSIRO-Mk3.6 0.336 IPSL-CM5A-LR 0.556 
EC-EARTH 0.443 MPI-ESM-MR 0.536 
IPSL-CM5A-MR 0.521 GFDL-ESM2M 0.530 
MIROC5 0.456   
HadGEM2-ES 0.255 
MPI-ESM-LR 0.497 

NorESM1-M 0.379 

Table 4 Coefficient of determination (R2) and annual percentage change of all the stations 
over the study region 

Stations Annual percentage change (%) Coefficient of determination (R2) 
Birgudi 44.63765 0.090 
Chhatti 38.14004 0.100 
Dhamtari 3.553443 0.665 
Dudhawa 36.05131 0.007 
Gangrel 28.30453 0.629 
Khajrawan Kanker 36.75524 0.151 
Murumsilli 2.888521 0.166 
Rudri 2.238775 0.018 
Sondur 73.01632 0.161 

5.2 Performance evaluations 

As previously discussed in Section 5.1, REginoal MOdel (REMO 2009) performed well 
as compared to other CORDEX climate models as well as Dhamtari station is taken as a 
reference station for further studies which is having a higher coefficient of determination 
i.e., 0.665 as compared to other stations located in the study region. However, to remove 
the dissimilarities and uncertainties of model ensembles, four distinct bias-correction 
techniques were used. Therefore, to quantify the performance of such bias correction 
techniques three statistical analyses have been performed (refer to Table 5). As per  
Table 5, the Dhamtari station performs well in all four bias correction techniques as well 
as other stations located in the study region. Among four bias correction techniques 
modified delta change was performed exceptionally well in terms of error parameters and 
correlation coefficient, which is having R2 = 0.61, NSE = 0.57, and RMSE = 95.75%. In 
addition, to quantify the performance of bias correction techniques Pearson correlation 
coefficient (PCC) was also assessed with the help of Taylor’s diagram. According to 
Table 6, The modified delta change method performed well i.e., PCC = 0.826 as 
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compared to other methods (PCC = 0.781 for linear scaling, delta change method, and 
quantile mapping, respectively) for REgional MOdel (REMO 2009) and MPI-ESM-MR 
(IITM-RegCM4) ranked next where (PCC = 0.799, 0.781, 0.781, and 0.649 for modified 
delta change, linear scaling, delta change method, and quantile mapping, respectively) 
[see Figures 4(a), 4(b), 4(c), and 4(d)]. Furthermore, in the case of monthly precipitation 
for RCP 4.5 and RCP 8.5 scenarios, including a three-time slice showing maximum 
precipitation around 8000 mm from May to October for all the locations under MRP 
Complex region Chhattisgarh. Similarly, for seasonal precipitation, both scenarios have 
maximum rainfall of around 25,000 mm, including three-time scales, i.e., (2021–2046), 
(2047–2072), and (2073–2098), respectively (refer to Figure 5 to Figure 6). Figure 7(a), 
Figure 7(b) to Figure 8(a), Figure 8(b) represent a comparative study of observed 
precipitation before and after bias correction by Delta change, Linear scaling, Modified 
delta change, and Quantile mapping method, respectively for the Dhamtari station. From 
Figures 7(a), 7(b) to 8(a), 8(b) the modified delta change method performed well and 
satisfactory simulated the before and after bias correction concerning observed data in 
terms of both monthly and yearly time scales. 

Figure 4 (a), (b), (c), and (d) Taylors diagram for Performance evaluation of South Asia 
CORDEX climate model precipitation using, (a) linear scaling (b) Delta change method 
(c) modified delta change method (d) quantile mapping for Dhamtari station under 
MRP Complex Region, Chhattisgarh (see online version for colours) 
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Table 5 Performance evaluation indices 

 

Li
ne

ar
 sc

al
in

g 
 

D
el

ta
 c

ha
ng

e 
 

M
od

ifi
ed

 d
el

ta
 c

ha
ng

e 
 

Q
ua

nt
ile

 m
ap

pi
ng

 
St

at
io

ns
 

R2 
NS

E 
RM

SE
 

 
R2  

NS
E 

RM
SE

 
 

R2  
NS

E 
RM

SE
 

 
R2  

NS
E 

RM
SE

 

Bi
rg

ud
i 

0.
50

 
0.

33
 

16
3.

84
 

 
0.

50
 

0.
32

 
16

4.
05

 
 

0.
60

 
0.

60
 

12
6.

37
 

 
0.

45
 

0.
42

 
15

2.
34

 
Ch

ha
tti

 
0.

49
 

0.
35

 
12

7.
83

 
 

0.
43

 
0.

25
 

13
7.

31
 

 
0.

58
 

0.
54

 
10

7.
22

 
 

0.
41

 
0.

31
 

13
2.

01
 

D
ha

m
ta

ri 
0.

51
 

0.
36

 
11

6.
91

 
 

0.
50

 
0.

35
 

11
7.

11
 

 
0.

61
 

0.
57

 
95

.7
8 

 
0.

61
 

0.
26

 
10

9.
52

 
D

ud
ha

w
a 

0.
44

 
0.

27
 

13
1.

13
 

 
0.

43
 

0.
26

 
13

1.
61

 
 

0.
52

 
0.

46
 

11
2.

96
 

 
0.

22
 

–0
.0

4 
15

6.
99

 
G

an
gr

el
 

0.
34

 
0.

07
 

14
0.

74
 

 
0.

49
 

0.
33

 
11

9.
34

 
 

0.
60

 
0.

56
 

96
.6

8 
 

0.
59

 
0.

39
 

11
4.

13
 

K
ha

jra
w

an
 K

an
ke

r 
0.

48
 

0.
30

 
12

3.
76

 
 

0.
48

 
0.

30
 

12
4.

03
 

 
0.

60
 

0.
55

 
99

.4
2 

 
0.

41
 

0.
17

 
13

5.
07

 
M

ur
um

sil
li 

0.
49

 
0.

35
 

12
9.

82
 

 
0.

49
 

0.
35

 
13

0.
12

 
 

0.
58

 
0.

54
 

10
9.

29
 

 
0.

44
 

0.
31

 
13

3.
90

 
Ru

dr
i 

0.
51

 
0.

37
 

11
7.

17
 

 
0.

50
 

0.
37

 
11

7.
51

 
 

0.
61

 
0.

58
 

96
.4

1 
 

0.
42

 
0.

21
 

13
2.

22
 

So
nd

ur
 

0.
44

 
0.

23
 

13
0.

66
 

 
0.

44
 

0.
23

 
13

0.
92

 
 

0.
57

 
0.

52
 

10
2.

88
 

 
0.

45
 

0.
12

 
13

9.
38

 



   

 

   

   
 

   

   

 

   

   32 S. Verma et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6 Pearson coefficient of Dhamtari station for 16 CORDEX climate models using four 
bias correction methods 

Climate models Climate model 
group 

Pearson correlation coefficient (PCC) 
Linear 
scaling 

Delta 
change 

Modified 
delta change 

Quantile 
mapping 

MPI-ESM-LR REMO 0.781 0.781 0.826 0.781 
CanESM2 SMHI-RCA4 0.664 0.664 0.578 0.565 
CNRM-CM5 0.759 0.759 0.695 0.692 
CSIRO-Mk3.6 0.70 0.70 0.582 0.592 
EC-EARTH 0.731 0.731 0.667 0.572 
IPSL-CM5A-MR 0.705 0.705 0.716 0.581 
MIROC5 0.773 0.773 0.677 0.654 
HadGEM2-ES 0.781 0.781 0.507 0.622 
MPI-ESM-LR 0.809 0.809 0.707 0.637 
NorESM1-M 0.775 0.775 0.617 0.588 
CanESM2 IITM-RegCM4 0.80 0.80 0.686 0.722 
CNRM-CM5 0.810 0.810 0.734 0.701 
CSIRO-Mk3.6 0.750 0.750 0.751 0.701 
IPSL-CM5A-LR 0.737 0.737 0.747 0.657 
MPI-ESM-MR 0.782 0.782 0.799 0.649 
GFDL-ESM2M 0.779 0.779 0.795 0.665 

Table 7 Mann Kendall, Sen’s slope, and Pettitt’s test for all stations simulated by  
MPI-CSC-REMO 2009 CORDEX RCM for RCP 4.5 scenario 

Stations Mann Kendall  
(P-value) Sen’s Slope (s) 

Pettitt’s test 
p-value Changepoint (t) 

Birgudi 0.979 –0.061 0.099 2081 
Chatti 0.662 0.422 0.695 2081 
Dhamtari 0.550 0.622 0.955 2081 
Dudhawa 0.385 0.921 0.662 2039 
Gangrel 0.483 0.737 0.699 2081 
Khajrawan kanker 0.891 0.232 0.104 2081 
Murumsilli 0.548 0.805 0.889 2081 
Rudri 0.491 0.718 0.626 2081 
Sondur 0.906 0.132 0.258 2036 
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Figure 5 Comparative study of observed monthly precipitation concerning RCP scenarios 4.5 
and 8.5 in three different time scales for all the stations under MRP complex region, 
Chhattisgarh (see online version for colours) 
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Figure 5 Comparative study of observed monthly precipitation concerning RCP scenarios 4.5 
and 8.5 in three different time scales for all the stations under MRP complex region, 
Chhattisgarh (continued) (see online version for colours) 

   

 

Table 8 Mann Kendall, Sen’s slope, and Pettitt’s test for all stations simulated by  
MPI-CSC-REMO 2009 CORDEX RCM for RCP 8.5 scenario 

Stations Mann Kendall  
(P-value) Sen’s Slope (s) 

Pettitt’s test 
p-value Changepoint (t) 

Birgudi 0.032* –2.340 0.054 2060 
Chatti 0.018* –2.667 0.018 2060 
Dhamtari 0.038* –2.464 0.033 2060 
Dudhawa 0.122 –2.402 0.243 2060 
Gangrel 0.034* –2.696 0.024 2060 
Khajrawan kanker 0.107 –2.154 0.104 2060 
Murumsilli 0.051 –2.557 0.059 2060 
Rudri 0.052 –2.732 0.078 2060 
Sondur 0.028* –2.942 0.025 2059 
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Figure 6 Comparative study of observed Seasonal precipitation concerning RCP scenarios 4.5 
and 8.5 in three different time scales for all the stations under MRP complex region, 
Chhattisgarh (see online version for colours) 
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Figure 6 Comparative study of observed Seasonal precipitation concerning RCP scenarios 4.5 
and 8.5 in three different time scales for all the stations under MRP complex region, 
Chhattisgarh (continued) (see online version for colours) 

   

 

Figure 7 (a), (b) Comparative study of observed precipitation before Bias and after bias 
correction by, (a) Delta change method (b) linear scaling for monthly and yearly time 
scales of Dhamtari stations under MRP complex region, Chhattisgarh (see online 
version for colours) 

  
(a) 
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Figure 7 (a), (b) Comparative study of observed precipitation before Bias and after bias 
correction by, (a) Delta change method (b) linear scaling for monthly and yearly time 
scales of Dhamtari stations under MRP complex region, Chhattisgarh (continued)  
(see online version for colours) 

  
(b) 

Figure 8 (a), (b) Comparative study of observed precipitation before Bias and after bias 
correction by (a) modified delta change method (b) quantile mapping for monthly and 
yearly time scales of Dhamtari stations under MRP complex region, Chhattisgarh  
(see online version for colours) 

  
(a) 

  
(b) 
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Table 9 Test statistics of monthly time scales of MPI-CSC-REMO (2021–2098) CORDEX 
RCM for all stations over the study region 
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5.3 Results of trend analysis 

REgional MOdel (REMO 2009) simulated annual rainfall patterns are summarised in 
Tables 7 to 8 for both RCP 4.5 and 8.5, respectively, for all stations in the study region 
from 2021 to 2098. As previously discussed in Section 4.4, the test was conducted with 
the help of Mann-Kendall statistics and Sen Slope estimator along with Pettitt’s test to 
examine the change point detection on time series. According to Table 7, negative values 
depicts a decreasing trend, whereas positive values depicts an increasing one, whereas all 
the stations have an increasing trend with a magnitude of 0.921mm/year for Dudhawa 
station and Murumsilli ranked next (i.e., 0.805mm/year), except Birgudi station shows 
the decreasing trend with a magnitude of 0.061 mm/year along with consistent change 
point was observed in the year 2081 for all stations over the study region except 
Dudhawa and Sondur i.e., 2039 and 2036, respectively. Similarly, for the RCP 8.5 
scenario, Table 8 shows the magnitude of the trend along with the occurrence of change 
point during 2021-2098, where the positive value demonstrates the increasing trend, the 
negative value depicts the decreasing trend, and the asterisk * stands for significant trend 
at 95% significance level. According to Table 8, all the stations in the study region show 
a 95% significant decreasing trend except Dudhawa, Khajrawan Kanker, Murumsilli, and 
Rudri. The maximum downward trend occurs with a magnitude of 2.942 mm/year for 
Sondur and 2.969 mm/year for Gangrel ranked next. In addition, the consistent change 
point was observed in the year 2060 for all stations over the study region except Sondur 
i.e., 2059. 

A brief description of rainfall dependencies on a monthly time scale is presented in 
Table 9, asterisk * denotes a trend that is statistically significant at a 95% confidence 
level, while a positive value shows an increasing trend and a negative value shows a 
decreasing trend. For Birgudi, there is a year-round increasing trend with a magnitude of 
3.17 mm/year in April, except for May and July, which show a decreasing trend with 
magnitudes of 0.97 mm/year and 0.51mm/year, respectively. Similarly, for Chatti, a 
significant increasing trend is seen in September with a magnitude of 0.86mm/year, 
except in March and August with a decreasing trend of 0.00mm/year and 0.05mm/year, 
respectively. In addition, in the case of the Dhamtari, the trend pattern is an increasing 
tendency throughout the year, with a substantial increase in October with a magnitude of 
0.03 mm/year, except for April and September, which show a falling trend with a 
magnitude of 0 mm/year and 0.92 mm/year, respectively. In the case of Dudhawa, there 
is a decreasing trend throughout the year, except January, March, April, June, September, 
and November shows an increasing trend. There is no significant increase or decrease at 
this station (refer to Table 9). The trend pattern of Gangrel stations over the study region 
demonstrates that there is an upward trend throughout the year as well as a substantial 
upward trend with the magnitude of 1.43 mm/year for September. The months of March, 
July, and August show a downward trend. However, the trend pattern for Khajrawan 
Kanker indicates an increasing trend throughout the year, except for July, August, and 
October, which show a decreasing trend. It is very similar to the Khajrawan Kanker 
except for the September month, which exhibits a substantial increasing trend with a 
magnitude of 1.53 mm per year (mm/year). Apart from that, Rudri station shows an 
increasing trend throughout the year except for March and a substantial increase in 
September with a magnitude of 1.19 mm/year. Finally, the trend pattern for the Sondur 
station is increasing throughout the year at 0 mm/year and 0.99 mm/year for April and 
September, respectively. May and July show a decreasing trend (refer to Table 9). In 
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overall conclusion, an ensemble of RCMs simulates precipitation trends better than 
individual models. REgional MOdel (RCM 2009) produces the most realistic simulated 
trends among the 16 RCMs. A substantial model dependence on RCM simulation over 
the study region is indicated by large variances in simulated precipitation variations 
between different RCMs This illustrates that using a single RCM to assess climate 
change over a study region might be undertaken with prudence. 

6 Conclusions 

In this study, 16 CORDEX-SA RCMs were tested for their ability to simulate 
precipitation climatology from 1980 to 2005 over the study area. For this study, 16 RCMs 
were developed by SHMI and IITM, including the Rossby Centre regional atmospheric 
model (RCA4) and ICTP’s Regional Climatic Model version 4.4.5 with a horizontal 
resolution of 0.440 (RegCM4), were compared to observational datasets. The RCA4 
models and the ensemble are reviewed on a seasonal and annual basis for their 
performance. Additionally, several statistical metrics are used to ensure that the model’s 
performance is robustly evaluated. Many different models and regions have been found 
to have vastly different performances. According to the findings of this study, earlier 
evaluations of the CORDEX’s performance within the research area have provided 
valuable knowledge (Anyah et al., 2006; Endris et al., 2013). The study region consists of 
three major reservoirs: Ravishankar Sagar, Dudhawa, and Murumsilli, which supply 
water to around half of the Chhattisgarh state for irrigation, domestic, and industrial 
purposes. As a result, it is necessary to investigate summer monsoon precipitation across 
the MRP Complex region using CORDEX data to quantify future water availability. 
However, the performance of 16 CORDEX South Asia experiments and nine rain gauge 
stations in the study area was assessed for its capacity to capture and identify 
precipitation climatology from 1980 to 2005 over the MRP Complex region to reflect the 
current climate. This study was carried out in order to assess the output of each 
experiment and its ensembles. Concerning the corresponding observation, the efficiency 
of experiments was assessed. As observed from the uncertainty review, the experiments 
demonstrate a wide range of variability in replicating the precipitation over the study 
area, both in terms of time and space. However, in the overall sense, REgional MOdel 
(REMO 2009) shows better performance for the Dhamtari station for both RCP 4.5 and 
RCP 8.5 than individual experiments as well as other rain gauge stations. RCMs have a 
tendency to exhibit biases over the world in complex geography. These biases may be 
exaggerated because the measurements have inaccuracies and uncertainties because of 
the lack of dense observational networks. Compared with other experiments and their 
proximity to the observational dataset, only one experiment, REgional MOdel (REMO 
2009), was selected because of better results. An observational dataset was used to 
demonstrate the experiments’ overall performance throughout space and time. Therefore, 
the present study assesses the capabilities of different RCMs before employing them in a 
future ensemble forecast of climate change over the study region. In the future, more 
RCM simulations with higher resolution should be done and put together to learn more 
about how the climate of the study region changes. 
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