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Abstract: The work presented here addresses cluster synchronisation for a
class of nonlinear systems using Lyapunov stability theory with nonlinearities
satisfying Lipschitz condition. Generally, Lyapunov stability-based adaptive
nonlinear control techniques are used to design the controller for nonlinear
systems. These techniques are also utilised to address synchronisation in
complex interconnected systems. The cluster synchronisation in a complex
network of different nonlinear systems is achieved when each state of
system of one cluster is synchronised to every corresponding state system of
other cluster. Here, using Lyapunov stability theory, a general criterion for
cluster synchronisation is obtained. For meeting the goal of synchronisation,
bidirectional connections within a cluster and across the clusters are
considered. To achieve the results, nonlinearities are assumed to satisfy
Lipschitz conditions. The appropriate design of gains for within cluster and
across the cluster coupling using Lyapunove stability theory, along with
application of Barbalat’s lemma, ensure synchronisation of an overall network
consisting clusters of dissimilar nonlinear systems. Numerical simulation are
presented further for example systems belonging to the considered class of
nonlinear systems to verify the efficacy of the proposed approach. For this
purpose, cluster of chaotic Lorenz and Lu systems are considered as part of
complex network.
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1 Introduction

Understanding the dynamics of nonlinear systems and their control have been the
primary focus of research community over the years. The design of appropriate
nonlinear control schemes to and synchronise stabilise the behaviour of such systems
with varied nonlinearities and complicated input-output interaction has been widely
explored in Krstic et al. (1995), Yeh and Kokotovic (1995), Ge et al. (2000), Sharma
and Kar (2011), Chen et al. (2015), Precup et al. (2017), Liu and Zhu (2021, 2022) and
Bora and Sharma (2022). Along with control, synchronisation of complex networks of
nonlinear systems has also been widely expanded and has become much studied topic in
control literature in last few decades. Cluster synchronisation of complex networks find
applications in areas including biology, physics, electronics, computer graphics, etc. A
complex network may consist of many clusters which involve connections of nodes of
one cluster to nodes of other clusters. There are many research contributions showing
close linkage between the cluster synchronisation for different network topologies.
Synchronisation of complex networks is approached by employing various nonlinear
control techniques over the years. For example, adaptive feedback control used in Wu
et al. (2012) and Pham et al. (2019), backstepping-based control explained in Changder
and Sharma (2022), pinning control adopted in Liu et al. (2007) and Wang and Chen
(2002), intermittent control-based synchronisation as elaborated in Xia and Cao (2009),
contraction-based synchronisation in chain networks given in work of Chauhan et al.
(2021), and many more. Furthermore, pinning synchronisation is an effective method
for managing the collective dynamic behaviours of networked systems as elaborated in
Wang et al. (2020). This method has been used for global synchronisation in regular
networks, including ring structured networks, with global connectivity. In real time
scenario, it is a challenging task to achieve synchronisation in complex networks
involving non-identical systems in different topologies. Adaptive control method given
in work of Chen et al. (2016) for complete synchronisation of multiple nonlinear systems
consists of many controllers which results in increased cost and size of the system.
So, in order to reduce the number of controllers, the pinning control methodology is
one of the best and efficient method as compared to adaptive control or any other
method used for cluster synchronisation as given by Wu et al. (2008). The idea of
pinning control was developed to promote and implement the control approach to
address synchronisation for complex networks as explored in Sun et al. (2015), DeLellis
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et al. (2018), Nian and Wang (2011), Wang and Shen (2013), Cai et al. (2015) and Sun
et al. (2019). For instance, by using Schur complement and Lyapunov stability theory,
pinning control method was designed to realise the lag synchronisation between two
nonlinear coupled networks as given by Sun et al. (2015). Pinning control method is
also used in meeting out synchronisation in directed networks as elaborated in Nian
and Wang (2011). A directed dynamical network with non-identical nodes was driven
to cluster synchronisation using the pinning control mechanism in Sun et al. (2015).
Similarly, for given directed heterogeneous dynamical network, intermittent pinning
control problem has been described in work of Cai et al. (2015). Keeping in mind
that many real networks cannot have arbitrarily huge coupling strength, Lyapunov
stability-based method using Lipschitz condition as given by Nian and Wang (2011)
is considered as a popular method for achieving cluster synchronisation. In Wang
et al. (2012), cluster synchronisation of nonlinearly coupled complex networks with
non-identical nodes and asymmetrical unidirectional coupling matrix has been discussed.
Cluster synchronisation in case of complex networks involving non-identical clusters
with one-way coupling is explored in Sun et al. (2019).

Cluster synchronisation involving the synchronisation of sub-network in a particular
network has drawn lots of interest in recent years as a unique synchronisation
phenomenon described as in Belykh et al. (2008), Zhang et al. (2001), Belykh et al.
(2001), Kouomou and Woafo (2003), Kouomou and Woafo (2003) and Jalan et al.
(2005). In fact, the concept of cluster (or partial) synchronisation is relatively new.
The first study of cluster synchronisation was based on a natural physical phenomena
that occurred in coupled oscillators and coupled map lattices. It refers to oscillator
cluster synchronisation with one another but the entire group is not synchronised
as elaborated in work of Belykh et al. (2008). Apart from cluster synchronisation,
evidently the linked systems can exhibit the well known spatiotemporal chaos and partial
synchronisation states as explored in Zhang et al. (2001). Amritkar et al. (2005) and
Belykh et al. (2005) studies about coupled map network synchronisation and persistent
synchronisation in lattices of coupled nonidentical chaotic system are discussed in detail.
With the advancement in modern science and technology, cluster synchronisation is
applied to biological engineering and secure communication application as well as
highlighted in Qin and Chen (2004) and Ma et al. (2006).

Till date, the contributions towards cluster synchronisation are mainly based on
complex networks of identical systems and very limited exploration has been done
towards network with non-identical systems in different clusters. However, several
real-world networks are based on multiple oscillators with non-identical dynamical
properties. Motivated by these, in the present work, cluster synchronisation in dynamical
networks with non-identical clusters is formulated. Here, a complex network with two
non-identical clusters is considered in which each cluster contains identical systems, but
systems in second cluster differ from first cluster, i.e., first cluster is different from
second cluster in terms of nonlinear systems involved in it. Further, to derive above
results, nonlinearities of systems are considered to be bounded with Lipschitz condition.
In general, we present cluster synchronisation in a network having connections within
cluster and across the cluster, i.e., the case with inner connection and outer connections
with all connections assumed to have bidirectional coupling. Using Lyapunov stability
theory blended with Barbalat’s lemma, gains for coupling of the systems within cluster
and across the clusters are appropriately selected to achieve the synchronisation with
such gain design. The desired analytical results ensure, matching of corresponding states
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of all the systems across the clusters. The proposed results are successfully validated for
example network consisting of clusters of Lorenz and Lu chaotic systems, respectively.

The manuscript is outlined as follows: in Section 2, main results for network
synchronisation of proposed class of nonlinear systems are discussed. In Section 3,
bidirectional all-to-all synchronisation of network of chaotic systems, across and within
clusters, is discussed in detail. In Section 4, simulation result are shown and the
proposed work is concluded in Section 5.

2 Main results

For meeting out the objective of cluster synchronisation, two groups of non-identical
systems are considered to constitute a network:

First group of nonlinear systems is given as

ẋi(t) = ϕxi(t) + f(xi, t); (1)

where i = 1, 2, 3, ..., N1; and second group of nonlinear systems is described as

ẋj(t) = θxj(t) + g(xj , t); (2)

where j = (N1 + 1), (N1 + 2), (N1 + 3), ..., (N1 +N2).
For nonlinear systems in equations (1) and (2), xi ∈ ℜn, xj ∈ ℜn are state vectors

of systems with associated matrices involving parameters given by ϕ ∈ ℜn×n and θ ∈
ℜn×n, respectively. The respective nonlinear functions of these groups are represented
as vector functions given by, f(xi, t) ∈ ℜn and g(xj , t) ∈ ℜn, respectively.

Remark 1: The complex network may be assumed to be consisting of M nodes which
are divided into m-clusters C1, C2, ..., Cm, with each cluster having same or different
numbers of nodes.

Now, consider two clusters, each consisting of N numbers of nodes and each node is
an n-dimensional dynamical system. The local dynamics of individual nodes in each
group are identical, while both clusters are different from each other. For example, we
may take first cluster having chaotic Lorenz system as its members and second cluster
as chaotic Lu systems. Accordingly, in these groups, the coupling equation of systems
in first cluster can be written in the following general form:

ẋi(t) = ϕxi(t) + f(xi, t) + k1

 N1∑
m=1,m̸=i

xm(t)− Γxi(t)


+ k2

N1+N2∑
h=1+N1

(xh(t)− xi(t)) (3)

where index i = 1, 2, 3, ..., N1.
By adding and subtracting θxi(t) in equation (3), we get
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ẋi(t) = ϕxi(t) + θxi(t)− θxi(t) + f(xi, t)

+ k1

 N1∑
m=1,m ̸=i

xm(t)− Γxi(t)


+ k2

N1+N2∑
h=N1+1

(xh(t)− xi(t)) (4)

Similarly, the description of 2nd cluster systems can be written as

ẋj(t) = θxj(t) + g(xj , t) + k1

 N1+N2∑
k=N1+1,k ̸=j

xk(t)− Γxj(t)


+ k2

[
N1∑
l=1

(xl(t)− xj(t))

]
; (5)

where index j = (N1 + 1), (N1 + 2), (N1 + 3), ..., (N1 +N2).
Also ϕxi(t) represents linear part of dynamics of individual nodes where vector

xi has elements [xi1, xi2, ..., xin] and f(xi, t) is nonlinear part of dynamical system of
cluster one. On the other hand, θxj(t) represents linear part of individual nodes where
vector xj has elements [xj1, xj2, ..., xjn] and g(xj , t) is nonlinear part of dynamical
system of cluster two and Γ is a constant matrix of size n× n. For simplicity, the
constants k1 ≥ 0 and k2 ≥ 0 are used to represent coupling strength of within cluster
and across the cluster connections, respectively.

Synchronisation error vector is defined as:

eij(t) = xj(t)− xi(t) (6)

where index i = 1, 2, 3, ..., N1; and index j = 1, 2, 3, ..., (N1 +N2).
Here, xj(t) denotes cluster-2 and xi(t) represents cluster-1.
The proposed class of nonlinear systems, which are considered member of each

cluster, satisfy the following assumption:

Assumption 1: The nonlinearities associated with system of cluster-1, i.e., f(x) and that
of cluster-2, i.e., g(x) are bounded by Lipschitz constant (γ), given as:

||g(y)− f(x)|| ≤ γ||y− x|| (7)

⇒ ||g(y)− f(x)||2 ≤ γ2||y− x||2 (8)

||.|| is considered to be the Euclidean norm in ℜn.

Assumption 2: The state vector x(t) of systems involved in cluster-1 and cluster-2 is
also norm bounded.

Remark 2: The class of systems described in equations (1) and (2) are considered
to have underlying nonlinearities as smooth functions. Majority of nonlinear systems
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qualify the above requirement and, thus, either locally or globally Lipschitz in nature.
Moreover, certain category of systems, like chaotic or hyperchaotic systems, have
bounded state vector for given initial conditions or certain range of parameter values.
Thus, Assumptions 1 and 2 are quite reasonable for the proposed class of systems
depicting cluster synchronisation.

Remark 3: In case of cluster synchronisation, the Lipschitz condition is often used to
bound the coupling strength between the individual systems in the cluster. This ensures
that the systems remain sufficiently close to each other in phase space, and therefore
synchronise over time. The choice of the Lipschitz constant L depends on the specific
system being studied, and may require some analysis to determine a reasonable value.
However, in general, a larger value of L (Lipschitz constant) corresponds to a stronger
coupling strength, which can lead to faster convergence to synchronisation but may also
increase the risk of instability or chaotic behaviour. Overall, the Lipschitz condition is
useful for analysing the stability and convergence of cluster synchronisation in coupled
chaotic systems. However, it is important to carefully choose and validate the value
of the Lipschitz constant to ensure that it is appropriate for the specific system being
studied.

Lemma 1: Barbalat’s lemma (Farkas and Wegner, 2016), if f is differentiable function
with finite limit, and ḟ is continuous, then ḟ → 0 as t → ∞. In term of Lyapunov
stability like formulation, let a function V (x(t)) be differentiable scalar function such
that

1 V (x(t)) is bounded

2 V̇ (x(t)) ≤ 0

3 V̇ (x(t)) is uniformly continuous, i.e., V̈ (x(t)) is to be bounded; then V̇ (x(t)) → 0
as t → ∞.

Lemma 2: We know that for any real number a and b, the following statement holds:

(b− a)2 ≥ 0;⇒ 2ab ≤ (b2 + a2) (9)

For the systems in equations (1) and (2), by incorporating above inequality, one can
write:

2[g(y)− f(x)]P e ≤ [g(y)− f(x)]T [g(y)− f(x)] + eTPTP e (10)

where P is positive definite symmetric square matrix of size (n× n), which satisfies
the following:

1 All the ordered principal minor determinants of P being positive.

2 P is symmetric and XTPX > 0; ∀X ̸= 0.

By using equation (6), the network structure given in equations (4) and (5) are said to
be realising cluster synchronisation, if the synchronisation errors satisfy the following
condition:

lim
t→∞

eij(t) = 0 (11)
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Using equations (4) and (5), error dynamics can be given as:

ėij(t) = θxj(t) + g(xj , t) + k1

 N1+N2∑
k=N1+1,k ̸=j

xk(t)− Γxj(t)


+ k2

N1∑
l=1

(xl(t)− xj(t))− ϕxi(t)− θxi(t) + θxi(t)

− f(xi, t)− k1

 N1∑
m=1,m̸=i

xm(t)− Γxi(t)


− k2

N1+N2∑
h=N1+1

(xh(t)− xi(t)) (12)

Here, index i = 1, 2, ..., N1; and j = N1 + 1, N1 + 1, ..., N1 +N2.
Further, equation (12) can be rearranged as:

ėij = θ[xj(t)− xi(t)] + [g(xj(t))− f(xi(t))]

+ k1

 N1+N2∑
k=N1+1,k ̸=j

xk(t)−
N1∑

m=1,m ̸=i

xm(t)


− k1Γ[xj(t)− xi(t)]− k2

[
N1∑
l=1

(xj(t)− xl(t))

]

− k2

[
N1+N2∑
h=N1+1

(xh(t)− xi(t))

]
+ θxi(t)− ϕxi(t) (13)

Equation (13) can be further be expressed as follows:

ėij = θeij(t) + [g(xj(t))− f(xi(t))]− k1Γeij(t)

+ k1

 N1+N2∑
k=N1+1,k ̸=j

N1∑
m=1,m ̸=i

emk(t)

− k2

N1∑
l=1

elj(t)

− k2

N1+N2∑
h=N1+1

eih(t) + θxi(t)− ϕxi(t) (14)

Theorem 1: For a complex system with clusters given in equations (4) and
(5), with error dynamics as in (14), if coupling gain k1 is selected such that
[θTP + Pθ + γ2I + P 2 − 2k1PΓ] ≤ 0 and the coupling gain k2 is selected
such that 2k1

∑N1+N2

k=N1+1,k ̸=j

∑N1

m=1,m ̸=i emk(t)P eij(t)− 2k2
∑N1

l=1 eij(t)P elj(t)−
2k2

∑N1+N2

h=N1+1 eij(t)P eih(t) ≤ 0 then both the clusters achieve the complete
synchronisation condition.
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Proof: To drive the results for cluster synchronisation, let us consider the Lyapunov
function candidate as follows:

V (t) = eTij(t)P eij(t) (15)

Time derivative of the equation (15) is given as follows:

V̇ (t) = ėTij(t)P eij(t) + eTij(t)P ėij(t) (16)

Using error dynamics from equation (14), the above equation can be re-written as:

V̇ (t) = [θeij(t) + [g(xj(t))− f(xi(t))]− k1Γeij(t)

+ k1

N1+N2∑
k=N1+1,k ̸=j

N1∑
m=1,m̸=i

emk(t)− k2

N1∑
l=1

elj(t)

− k2

N1+N2∑
h=N1+1

eih(t) + θxi(t)− ϕxi(t)]TP eij(t)

+ eTij(t)P [θeij(t) + [g(xj(t))− f(xi(t))]

− k1Γeij(t) + k1

N1+N2∑
k=N1+1,k ̸=j

N1∑
m=1,m ̸=i

emk(t)

− k2

N1∑
l=1

elj(t)− k2

N1+N2∑
h=N1+1

eih(t) + θxi(t)− ϕxi(t)

]
(17)

where index i = 1, 2, ..., N1; and index j = N1 + 1, N1 + 1, ..., N1 +N2.
Further, equation (17) can be re-written as:

V̇ (t) = eTij(t)[θTP + Pθ]eij(t)
+ [g(xj(t))− f(xi(t))]TP eij(t)
+ eTij(t)P [g(xj(t))− f(xi(t))]− 2k1eTij(t)ΓP eij(t)

+ 2k1

N1+N2∑
k=N1+1,k ̸=j

N1∑
m=1,m̸=i

emk(t)P eij(t)

− 2k2

N1∑
l=1

eij(t)P elj(t)− 2k2

N1+N2∑
h=N1+1

eij(t)P eih(t)

+ 2eij(t)θPxi(t)− 2eij(t)ϕPxi(t) (18)

Now, from equations (8) and (9), we can rewrite the above equation as follows:

V̇ (t) = eij(t)[θTP + Pθ + γ2I + P 2 − 2k1ΓP ]eij(t)

+ 2k1

N1+N2∑
k=N1+1,k ̸=j

N1∑
m=1,m̸=i

emk(t)P eij(t)

− 2k2

N1∑
l=1

eij(t)P elj(t)− 2k2

N1+N2∑
h=N1+1

eij(t)P eih(t)

+ 2eij(t)θxi(t)− 2eij(t)ϕxi(t) (19)
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To show the stability result for present case, the equation (19) is segregated into three
parts, i.e., V̇1, V̇2 and V̇3; such that V̇1 is given as:

V̇1 = eij(t)[θTP + Pθ + γ2I + P 2 − 2k1PΓ]eij(t), (20)

V̇2 is given as:

V̇2 = 2k1

N1+N2∑
k=N1+1,k ̸=j

N1∑
m=1,m̸=i

emk(t)P eij(t)

− 2k2

N1∑
l=1

eij(t)P elj(t)− 2k2

N1+N2∑
h=N1+1

eij(t)P eih(t) (21)

and V̇3 is given as:

V̇3 = 2eij(t)θPxi(t)− 2eij(t)ϕPxi(t) (22)

Equation (20) involves a matrix identity [θTP + Pθ + γ2I + P 2 − 2k1PΓ] which can
be shown to be negative definite by appropriate selection of gain k1, thus, ensuring
V̇1 ≤ 0. Here, γ is Lipschitz constant as per equation (7). Thus it leads to

V̇1 ≤ 0 (23)

Equation (21) forms a matrix of dimension (nN × nN) with diagonal elements
involving coupling strength gain k2 and off-diagonal elements having entries in term
of coupling gains k1 and k2. By selecting suitable value of coupling gain k2 in
equation (21) the underlying matrix can be shown to be negative definite, leading to
V̇2 ≤ 0.

Further, in equation (22), the underlying function satisfies all requirements of
Lemma 1, i.e., V̈3 remain bounded as systems involved are chaotic in nature and have
bounded states, thus leading to V̇3 = 0 as t → ∞.

The above interpretation of stability ensures that the time derivative of Lyapunov
function candidate V̇ (t) is uniformly negative definite (UND). It also implies that
synchronisation error is stabilised at origin. Stabilisation of synchronising error signifies
that the cluster synchronisation goal is achieved. This completes the proof.

3 Synchronisation of bidirectional all-to-all coupled nonlinear networks of a
class of chaotic systems

In this section, the theoretical results derived in previous section are verified with a
suitable example belonging to the proposed class of nonlinear systems.

Consider two nonidentical clusters with first cluster as a set of chaotic Lorenz
systems and second cluster as a set of chaotic Lu systems. Let both the clusters have
two systems each.
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The dynamics of Lorenz systems involved in first cluster is given as

ẋ11 = a(x12 − x11)

ẋ12 = bx11 − x11x13 − x12

ẋ13 = x11x12 − cx13

(24)

and

ẋ21 = a(x22 − x21)

ẋ22 = bx21 − x21x23 − x22

ẋ23 = x21x22 − cx23

(25)

The dynamics of Lu systems which are part of second cluster is given as

ẋ31 = p(x32 − x31)

ẋ32 = −x31x33 + rx32

ẋ33 = x31x32 − sx33

(26)

and

ẋ41 = p(x42 − x41)

ẋ42 = −x41x43 + rx42

ẋ43 = x41x42 − sx43

(27)

The system parameters are given as a = 10, b = 28 and c = –8/3, respectively, for Lorenz
attractor and p = 36, r = 20 and s = 3, respectively, for Lu attractor. The phase portrait
of Lorenz attractor is shown in Figure 1 and that of Lu attractor is shown in Figure 2.

Here, the case of bidirectional all-to-all, two-way coupled network configuration is
considered as shown in Figure 3. As shown this figure, the two clusters, i.e., cluster-1
contains two system x1 and x2 and cluster-2 have different systems then cluster-1 as
x3 and x4. All the systems are coupled bidirectionally to each other with all-to-all to
configuration.

The error dynamics for above systems can be obtained for both the clusters as:

ė1i = f(x3i)− f(x1i) + k1[(x4i − x2i)− (x3i − x1i)]

+ k2[−3(x3i − x1i)− (x4i − x2i)]

ė2i = f(x3i)− f(x2i) + k1[(x4i − x1i)− (x3i − x2i)]

+ k2[−3(x3i − x2i)− (x4i − x1i)]

ė3i = f(x4i)− f(x1i) + k1[(x3i − x2i)− (x4i − x1i)]

+ k2[−3(x4i − x1i)− (x3i − x2i)]

ė4i = f(x4i)− f(x2i) + k1[(x4i − x2i) + (x3i − x1i)]

+ k2[−3(x4i − x2i)− 3(x3i − x1i)] (28)

where index i = 1, 2, 3.
By selecting gains k1 and k2 suitably as per results presented in Theorem 1 leads to

convergence of above error dynamics.
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Figure 1 3D phase portrait of Lorenz attractor (see online version for colours)

Figure 2 3D phase portrait of Lu attractor

Figure 3 Block diagram of bidirectional all-to-all coupled network
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Figure 4 Synchronisation of first state of each system in network (see online version
for colours)

Figure 5 Synchronisation of second state of each system in network (see online version
for colours)

Figure 6 Synchronisation of third state of each system in network (see online version
for colours)
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Figure 7 Error convergence of 1st system and 3rd system of the network (see online version
for colours)

Figure 8 Error convergence of 1st system and 4th system of the network (see online version
for colours)

Figure 9 Error convergence of 2nd system and 3rd system of the network (see online version
for colours)
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Figure 10 Error convergence of 2nd system and 4th system of the network
(see online version for colours)

4 Simulation results

In order to apply analytical results to the synchronisation problem, numerical simulations
are performed. To examine the cluster synchronisation behaviour of non-identical
complex networks, simulation tests are performed using MATLAB for ten seconds.
Initial conditions for Lorenz and Lu systems are considered as [x11(0), x12(0), x13(0)]
= [8, 8, 8]; [x21(0), x22(0), x23(0)] = [7, 7, 7]; [x31(0), x32(0), x33(0)] = [5, 5, 5]; and
[x41(0), x42(0), x43(0)] = [5, 5, 5], respectively, and Lipschitz constant γ is selected
as 1.0. Selection of suitable gains as k1 = 80 and k2 = 100 ensure convergence of
corresponding states of systems. These gain settings ensure complete synchronisation
of complex network. This results in cluster synchronisation of subsystem states of
non-identical complex network with each other. The variations of all three states of
systems involved in both the clusters are shown in Figures 4 to 6, respectively. Error
convergence of bidirectional all-to-all coupled nonlinear systems in complex network is
shown in Figures 7 to 10 and the plots clearly indicate that error dynamics converge
towards zero with time. Here, controller function is switched on at t = 1 seconds.

5 Conclusions

The presented work is focused towards deriving synchronisation scheme for complex
dynamical network with non-identical clusters. Synchronisation controller is derived in
term of coupling strengths of network. The appropriate coupling gains are designed
while assuming underlying nonlinearities to be following Lipschitz condition. The
synchronisation condition are established on the basis of Lyapunove stability theory
along with Barbalat lemma by exploiting the bounded nature of system states. Detailed
numerical simulations are performed, which verify the efficacy of derived theoretical
results. The proposed scheme can be further tested for networks subjected to parametric
uncertainty and external disturbance.
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