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Abstract: Simulation-based optimisation enables companies to take decisions
based on data, and allows prescriptive analysis of current and future
production scenarios, creating a competitive edge. However, effectively
visualising and extracting knowledge from the vast amounts of data generated
by many-objective optimisation algorithms can be challenging. We present an
open-source, web-based application in the R language to extract knowledge
from data generated from simulation-based optimisation. For the tool to
be useful for real-world industrial decision-making support, several decision
makers gave their requirements for such a tool. This information was used to
augment the tool to provide the desired features for decision support in the
industry. The open-source tool is then used to extract knowledge from two
industrial use cases. Furthermore, we discuss future work, including planned
additions to the open-source tool and the exploration of automatic model
generation.
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1 Introduction

Research and industrial interests in the concept of Industry 4.0 are steadily increasing
(Liao et al., 2017). For industry, adopting the Industry 4.0 paradigm early means
getting a competitive edge over other businesses. For academia, there exist funding
opportunities in the research area due to national and international interests. Industry 4.0
embraces cyber-physical systems, and more importantly, cyber-physical production
systems, resulting in an increase in the use of simulation (Monostori et al., 2016).

Data generated in an Industry 4.0 context can be used for descriptive, diagnostic,
predictive, or prescriptive analytics (Mahmoodi et al., 2022). For a production line,
descriptive analysis can provide answers about the current state of the process, while
diagnostic analytics can identify what went wrong in the process. If predictive analytics
are attained, predictions about when the process will fail can be used. The most potent
form of analysis is prescriptive analytics, whereas a recipe for improving the process
can be attained. Analysis of the large datasets from simulation-based multi-objective
optimisation (SBO) have been described as simulation-based innovisation (SBI) or
knowledge-driven optimisation (KDO) (Ng et al., 2009; Bandaru and Deb, 2016). The
knowledge generated from the optimisation data increases the utility of the optimisation.
In the manufacturing context, knowledge can be used to prescribe improvement efforts
with which the biggest gain for the least amount of cost can be found, and in which
order (Jain et al., 2015).

As manufacturing industries in general, and the automotive industry in particular,
are moving towards the electrification of the transport sector, a large transformation is
required. This affects the automotive industry wherein new production is required to
tackle new products introduced, while in parallel dealing with unstable supply chains. To
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be proactive about this change, alternatives need to be analysed and the consequences
on existing production and supply chain will need to be investigated. As argued in this
paper, this kind of analysis can be effectively supported by SBO.

Currently, one of the biggest problems in academic research is reproducibility.
One example of the lack of reproducible science was examined in the field of
Psychology. Decades’ worth of academic output in the form of peer-reviewed literature
reported results were found not to be reproducible (Aarts et al., 2015). To counter
this development, academic journals embrace open science and open data, encouraging
researchers to publish supplementary material, e.g., raw data, processed data, and
code to reproduce and corroborate findings. This development aims to increase the
reproducibility and transparency of methods and results.

When the researcher relies on graphical user interfaces or particular visualisation
software to perform their analysis, the steps taken are difficult to document and
reproduce exactly. Instead, each step should be expressed and be reproducible in code.
This is important both for publishing, and for the workflow of each researcher. The
use and creation of an open-source knowledge-extraction tool allowing reproducible
analysis are therefore important, both from the perspective of industry and academia.
For industry, it would allow for faster decision support delivered to strengthen the
competitiveness of industry, and record steps are taken in visual analytics to be
reproduced later. There exist tools for the connected field multiple criteria decision
making, but they are not focused on reproducibility (Hakanen et al., 2022; Shavazipour
et al., 2021; Mazumdar et al., 2022).

The aim of this study is to investigate the requirements of industrial decision
makers regarding decision support provided by KDO. The requirements are gathered
from industrial decision makers on their needs for decision support. Management teams
were shown a relevant simulation model and corresponding dataset obtained by SBO
through a decision-support system. Results from the requirement analysis were used
to guide further developments of the decision-support tool and gain insights into the
decision-making process on the higher manufacturing hierarchy levels.

This article is structured as follows: Section 2 details the foundations of SBO,
multi-objective optimisation (MOO), KDO, and discusses other research in the area.
Section 3 describes the method of gathering the requirements and the optimisation
case studies and their results are presented in Section 4. The study is concluded with
conclusions and discussions on future work in Section 5.

2 Background

In the background section, MOO datasets and their special properties will be
presented in addition to knowledge-extraction methods of MOO datasets. The main
knowledge-extraction method is flexible pattern mining (FPM), based on frequent
itemset mining and association rule learning, presented in Subsection 2.2. Another
method for explicit rule generation is decision trees, detailed in Subsection 2.1.

Creating knowledge by applying data mining methods to MOO data differ from
other data mining applications due to the properties of the MOO dataset (Bandaru et al.,
2017a). These special properties, and the requirements for the data mining methods
applied to generate knowledge from the datasets, can be summarised as follows:

• handling of two separate spaces, objective and decision space
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• decision maker involvement

• knowledge representation

• different variable types in the data

• problem parameters.

Visualisations of MOO datasets are performed in the objective space, showing the results
from the optimisation, but the extraction of knowledge is handled in the decision space
with all the inputs. These two spaces are different, and clusters of objectives identified
through clustering methods are most likely not reflected as the same clusters in the
decision space. Thought needs to be placed into the application of knowledge-extraction
and clustering methods for MOO datasets.

The involvement of a decision maker in a practical MOO problem to select the
wanted solution – and possibly also influence the optimisation process by introducing
preferences – is an aspect special to MOO. The preferred solutions selected by a
decision maker should be used to extract knowledge from their respective decision
space, but knowledge can also be gained by using data mining on the non-selected
solutions to differentiate decision variables between wanted and non-wanted solutions.

Representing the knowledge mined from the preferred solutions should generate
knowledge in an explicit form due to the need to present it to a decision maker and
later convert it to an actionable form. This explicit knowledge can be in the form of
analytical relationships, decision rules, or association rules. A MOO dataset can include
different types of data, both continuous, discrete, and nominal. Data mining methods
would need to handle a mixture of these (Bandaru et al., 2017a).

MOO problems can also include problem parameters in addition to variables and
objectives. These problem parameters are not altered by the optimisation algorithm but
represent external controlling parameters such as constraints, variable bounds, or even
objective functions. By altering these parameters and then running the optimisation
again, higher-level knowledge can be obtained (Bandaru and Deb, 2013).

2.1 Decision trees

Decision trees have become widely used as classifiers in machine learning, pattern
recognition, and most important for this study, data mining (Rokach and Maimon, 2010).
This study will focus on classification and regression trees (CARTs) due to their ability
to generate both CARTs (Breiman et al., 1984).

The data in decision trees is partitioned to maximise the homogeneity of the response
variables by identifying the predicting variable which will best split the data into
two homogeneous groups. For each partition, each predictor is evaluated, even those
used in previous partitions. Maximising homogeneity in each partition is achieved by
minimising heterogeneity, most commonly using the Gini Index, i.e., the probability of
a randomly chosen element would be mislabeled if it was randomly labeled according
to the distribution of labels in the partition. The base of the inverted tree is called the
root node, and the end results are called leaves or terminal nodes. After growing the
trees, a pruning step is applied with which the tree is shortened by removing leaves,
‘trading accuracy for simplicity’ (Rokach and Maimon, 2010). Pruning has been shown
to improve the generalisation performance of the decision tree (Breiman et al., 1984).
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Applications for the improvement of manufacturing can be found in Thomas et al. (2014,
2015), Bergmann et al. (2017) and Prajapat et al. (2020).

Decision trees are explicit in nature, as they are self-explanatory and can be
converted to a set of rules, and can handle both nominal and numeric attributes with
discrete and continuous outcomes (Rokach and Maimon, 2010). The main problem
with decision trees is their tendency to overfit the data, meaning that the model has
become too specialised and will not perform well when encountering new data (Berk,
2009). Reducing overfitting can be accomplished by constructing average results over
random samples of the data, which gave rise to an early technique known as bootstrap
aggregation or ‘bagging’. Bagging grows multiple trees, each using a random sample
of the training data, and the predictions from all trees are then averaged (c.f. Breiman,
1996). Bagging eventually led to random forests (Breiman, 2001).

2.2 Pattern mining

Sequential pattern mining was developed through the analysis of market basket (sales)
data in an effort to determine which items were commonly bought together by a specific
customer (Agrawal and Srikant, 1995). Three concepts are important in sequential
pattern mining, itemset, sequence, and support. The itemset is a combination of items
bought together at a specific instance, while the sequence is an ordered list of all
itemsets bought by the customer. If the sequence of a customer includes a specific
sub-sequence, the customer supports that sub-sequence. A list of all sub-sequences
with a support value larger than a predefined minimum support value is the target of
sequential pattern mining (Höppner, 2010).

The apriori algorithm is one method of association rule mining frequently used in
data mining applications (Bandaru et al., 2017b). Starting with a list of all one-itemset
sequences L1, which meets the minimum support value, the algorithm continues by
adding one-itemsets together into two-itemset sequences, called L2, and analysing
support for those. This combination is possible through the downward closure property,
stated as “every non-empty subset of a frequent sequence is also frequent” (Agrawal
and Shafer, 1996). Terminating the algorithm is the condition that Lk is empty, i.e., no
frequent k-itemsets can be identified. The list of frequent sequences is then pruned to
create sequences called sequential patterns (Agrawal and Shafer, 1996).

Sequential pattern mining is a good method for identifying exact patterns in a
dataset, but for elicitation of explicit knowledge, the rules generated by decision trees
are more useful. FPM has been developed as an extension to sequential pattern mining to
combine the strengths of sequential pattern mining with the rule-generation capabilities
of decision trees (Bandaru et al., 2017b). Each solution in the MOO dataset is treated as
a customer in sequential pattern mining, and each variable as a transaction. Converting
the sequences into a table, where each parameter x, where x ∈ {0, 1}, is evaluated for
less than, equal, or greater than each of its discrete options, allows for the creation of
rules by applying the apriori algorithm to find patterns of ones. The stated benefits of
FPM are: an unsupervised implementation, the generation of rules, and does not require
class labels. If a preferred area of solutions is expressed by the decision maker, the ratio
of support for rules in the selected area to that of rules in the unselected area can be
used as ordering (Bandaru et al., 2017b). New methods related to using MOO dataset
with machine learning algorithms are usually related to online KDO, meaning using the
knowledge learned from the dataset to assist the optimisation to converge faster to some
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preferred region in the objective space (Mittal et al., 2022). In contrast, the current paper
is focused on offline KDO wherein the generated knowledge and visualisations are used
to assist human decision makers (i.e., human learning).

3 Method

Using SBO has several benefits, but given the large amounts of data it generates
which can be difficult to interpret and present to a decision maker (Amouzgar et al.,
2018). Without some proper analysis and data-mining techniques, knowledge about
the underlying system will be impossible to attain and some benefits of SBI will be
lost. Quick and high-quality visualisations can also aid in the exploration of a dataset
when performing an initial analysis of the problem or preparing data for publication.
Interactive selection of solutions in a graphical user interface enable users to quickly
select a region of interest, compared to creating filter rules for the same solutions.
Existing solutions for SBO data exploration and knowledge-extraction are powerful, but
many are closed-source. Acquiring, modifying, analysing, and extending closed-source
software is difficult or impossible, and therefore, an open-source alternative is beneficial.

The aim of this research is the augmentation of an open-source knowledge-extraction
tool by gathering requirements from industrial decision makers, and the application of
the open-source tool to two industrial problems. The knowledge generated from the
SBO data can benefit the industry by revealing connections between inputs not known
previously.

The method section is divided into four subsections. In Subsection 3.1, the
decision-support system and the open-source tool based on KDO are presented. Next, in
Subsection 3.2 we detail the requirements gathered from a group of industrial decision
makers. Then followed by two sections detailing the industrial case studies performed
on the supply-chain and manufacturing site levels in Subsections 3.3 and 3.4.

3.1 Decision-support tool

In the previous paper, the open-source tool for reproducible analysis of MOO data and
knowledge extraction was presented by reproducing the results of two journal articles
(Lidberg et al., 2022). One of those articles, Dudas et al. (2014), presents the SBI
process of:

1 simulation-based multi-objective optimisation (SBO)

2 data pre-processing

3 pattern detection

4 interpretation and evaluation

To support the process steps of SBI, the open-source tool has several views shown in
Figure 1. Data exported from the SBO step can be used in the application and entered
into the first stage of analysis, called data pre-processing. The data pre-processing stage
is supported through two views, import data and filter data. After data pre-processing
follows pattern detection, also supported by two views: cluster data and visualise data.
Finally, the last stage of SBI, interpretation and evaluation, is handled in the view
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rule extraction, supported by two methods: SBI and FPM. The resulting data from the
various stages can be exported from the final view called export data. The source code
for the open-source tool is publicly available as version 0.0.1.9000 (Lidberg, 2022).

Figure 1 Knowledge-extraction captured in code, allowing for a repeatable process from
Lidberg et al. (2022) (see online version for colours)

Figure 2 Import data view in the application (see online version for colours)

3.1.1 Import data

The intended use of the application is the analysis of optimisation data obtained
through SBO. The import data view contains two parts, uploading data – formatted
as comma separated values (CSV) – and assigning the parameters to one of three
groups: objectives, inputs, and outputs as seen in Figure 2. These groupings persist
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through the remainder of the analysis and influence the methods used. Constraints in
the optimisation can be added as outputs or objectives as needed, but are otherwise not
recognised as a separate group. The information about the constraints, and whether or
not the solutions are feasible, comes from the optimisation backend included in the CSV
file.

3.1.2 Filter data

The resulting datasets for SBO are usually large, with population numbers and
generations combining tens of thousands of solutions. Large amounts of data will
complicate the visualisation and hinder understanding for researchers and algorithms.
Due to the iterative nature of the genetic algorithms most commonly used for SBO,
the solutions early in the optimisation process could be of limited value for the
final analysis. The decision maker could also be interested in certain regions of the
objective space, or have specific preferences for one objective over another. In these
circumstances, filtering the data before clustering, visualising, and extracting knowledge
can be beneficial. To support these scenarios, the filter data view was implemented in
the form of a table view.

3.1.3 Cluster data

Identifying clusters in the data provides knowledge about the connection between the
input space and objective space. Four categories of clustering methods organised as tabs
are available: hierarchical, partitioning, density, and decision trees, shown in Figure 3.
The automatic suggestion for the number of clusters to use is available for some
clustering methods, assisting the user in selecting the appropriate number of clusters.

Figure 3 Applying clustering based on decision trees in the cluster data view
(see online version for colours)
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3.1.4 Visualise data

When there are more than three objectives in SBO, visualisation of them becomes
difficult. Identifying clusters and structure in data can be achieved using several
individual visualisations, although combining them gives even more insight. With
brushing and selecting in the visualisation, a decision maker can select the solutions
which are relevant and most important to them when taking new decisions based on
data.

The visualise data view has two components, a parallel coordinates plot on the top,
and a 2D/3D-view of the data at the bottom, shown in Figure 4. These components
share filtering, colouring, and dimension selection. The parallel coordinates plot allows
for filtering and quick visual comparison between the objective space and decision
space. The 3D-view offers an alternative view for visual comprehension of the current
data, while the 2D-view offers the possibility of interactive selection of interesting areas
and/or solutions.

Figure 4 Parallel coordinates chart and visualising an interesting region in the three
dimensional scatter plot (see online version for colours)

3.1.5 Rule extraction

Extracting rules from SBO data allows for prescriptive analytics. This shows not only
which parameter but also the necessary change to reach a wanted state. The prescriptive
rules are presented in order of decreasing importance through the FPM implementation
in R, shown in Figure 5. Solutions are either selected in the visualise data view or
assigned through a reference point. The reference point could be the ideal trade-off point
for the decision maker, or a preference in either objective. Rule extraction by decision
trees, following the SBI method, is also possible but will not be covered in this study.
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Figure 5 Rule generation through FPM in the open-source tool (see online version
for colours)

Figure 6 Export data view with download options on the left and generated code on the
right, cropped for the sake of brevity (see online version for colours)

3.1.6 Export data

At the end of the analysis, four datasets can be exported in the export data view as
CSV-files, representing the state of data from each of the previous steps. Exporting code
allows the user to download an R script file with the generated code, seen in the right
half Figure 6. The generated code captures the main steps taken in the application, as
changes to the dataset. The code can then be used to reproduce the analysis without the
need for an interactive environment. For example, selecting the exact same solutions
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interactively can be difficult to achieve with consistency. Instead, having the exact
solutions stored as code allows for reproducibility of the analysis.

3.2 Industrial requirements analysis

Industrial decision making on the higher levels of the manufacturing hierarchy, i.e.,
manufacturing site and the supply chain, has a large impact on the entire manufacturing
company. Many decisions made also have a large impact on the output of the system
and its financial performance. To better understand the decisions made, the range of
options and the state of data-based decision making, inputs from actual decision makers
are of high relevance.

Industrial decision makers were gathered to get information about the current state
of decision-support in addition to their perceived future requirements. The selected
participants are members and leaders of the management team for a manufacturing
site, including managers for production, maintenance, quality, method development,
information technology, production technology, and human resources. A few of the
participants had previous experience with simulation and even fewer had experience
with KDO.

Smaller groups were formed with three to four participants and each group would
discuss open-ended questions and report back on their findings. The context of the
discussion was centred around the use cases presented in Subsection 3.3 for the
supply-chain case, and in Subsection 3.4 for the manufacturing site case. A deliberate
choice was made not to introduce KDO concepts before discussions began in the smaller
groups so as to not precondition the participants and limit the range of their discussions.
Each group had an external observer with more knowledge about KDO taking notes
about the discussions. The discussion outcomes from the smaller groups were then
presented to everyone. The questions proposed to the groups were the following:

1 What type of answers are you interested in from a decision-support system?

2 On which key performance indicator (KPI) are you currently basing your
decisions?

3 How many alternatives do you consider when making a decision, and how many
alternatives are manageable?

4 Do you consider one alternative at a time as a group, or is each participant
selecting their own preferred alternative?

The first question was asked to ascertain the type of answers the participants would
want from a decision-support system. These answers could range from simple KPI, e.g.,
lead time, production capacity or costs, to more complex answers, such as identifying
bottlenecks, analysing the consequences of introducing new products or taking on new
business. The second question is stated to identify the valuable KPI for the decision
makers, which could be different depending on the decision making context. For
the third question, it was stated to learn how the decision makers handle different
alternatives and choose between them. Are the decision makers limiting themselves
to just a few alternatives? Is this affected by seniority in the hierarchy and in the
chain of decision making? Finally, the last question is posed to investigate the group
decision making process. The intent was to investigate the preferences in the number



Reproducible decision support for industrial decision making 465

of alternatives, the presentation of alternatives, and the time needed to process the
prerequisites of each alternative. Are decision makers willing to perform basic analysis
tasks themselves or do they prefer to have the analysis already made for them? This has
a large impact if the intent of the decision-support system is to show several alternative
trade-off solutions to a decision maker.

3.2.1 Identified requirements

Starting from the first question, the types of answers they would like to get from a
decision-support system, they wanted answers to align to already established and set
goals. These include KPI for safety, quality, delivery, cost, environment, and people.
The scope for the decision-support for this study will be on improving KPI for the
delivery goals, which is the easiest to implement in a discrete-event simulation model.
The participants suggested that they are not always taking decisions based on data or
KPI, but that they wanted to move in that direction.

The participants also requested assistance in answering complex questions about
their system. Currently, live data for the manufacturing system is collected and
displayed in a dashboard accessible from the web. This allows for a more transparent
decision-making process where everyone bases their understanding of the health of the
system by a single source of truth. The dashboard has helped decision makers attain
descriptive analytics about their system. This view is static and based on historical
data. Many decision makers wanted to augment the dashboard with predictive analytic
capabilities, with which future performance of the departments and the complete
manufacturing site could be displayed.

One of the more complex questions which decision makers wanted assistance
regarded scenario handling and what-if analysis. This connects to the third question
about the number of manageable alternatives when making a decision. The participants
noted that they usually had three alternatives when making a decision; preserving the
status quo, the decision maker’s wanted state, and a compromise in cost or capability.
They also expressed a desire to keep the number of alternative solutions open for
as long as possible. In MOO datasets, especially with conflicting objectives, the
number of Pareto-optimal solutions can be large. For knowledge-extraction methods,
non-Pareto-optimal solutions are also included to get more knowledge from the data,
further increasing the number of alternatives.

The biggest problem the participants faced was prioritising the limited resources
to increase the utilisation and capability of the system while ensuring that the
improvements made are of benefit to the total system output, and not causing
sub-optimisations. Identification of the current bottlenecks and the type of problem
would enable prescriptive analytics of the system. This, in turn, would create a recipe
and the steps needed to reach their wanted state of the complete system.

Trust in the system is an issue brought up by decision makers. Is the data generated
from the decision-support system trustworthy, or will people revert to their old and
proven ways of analysing their system? This will be out of the scope of this study, but
is an important part of the change management process in the digitalisation of industry.

For the fourth and final question, participants stated that much of the decision
making was done without a holistic view of the system. Individual departments set
their goals and priorities for improvements. As awareness of the state of the system has
increased, due to Industry 4.0 initiatives such as the dashboard of live data, decision
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making has become more transparent. When everyone has aligned their views based
on data, the decision making process can be completed, focusing on the output of the
complete system, reducing the effect of silos in the organisation.

Concluding this requirements analysis, the decision makers required help with
prioritising improvements to increase the current output. Another requirement was to
get support in handling a larger number of alternatives. Keeping their options open for
as long as possible, and as the time for a decision is coming closer, reduce the number
of alternatives to a manageable size and present them in an appropriate context. These
requirements will be applied to two optimisation studies described in the next sections.

3.3 Manufacturing footprint case

The first industrial use case is the manufacturing footprint case (MFC). A supply-chain
optimisation case where manufacturing of two main products, product A and product B,
can be allocated to three geographically disparate manufacturing sites over the course of
six years. The simplified bill of materials can be summarised as; product A is produced
from raw material arriving from one supplier, while product B requires four pieces of
product A and one piece of a separate raw material arriving from a different supplier.
This section will detail the simulation model and the setup of the optimisation with the
required customisation to the optimisation algorithm. To protect the intellectual property
of the company, specific details will be masked and the model can not be provided.

3.3.1 Simulation model

The discrete-event simulation model is built using Siemens Tecnomatix Plant
Simulation, version 2201.003. Each manufacturing site is represented in the model using
a similar technique presented in a previous publication (Lidberg et al., 2018). The site is
responsible for ordering raw material from one of several possible suppliers depending
on available capacity and proximity. Each request for product A, product B, or raw
material, is handled by a global ordering system where the inventory of each product
type and site is tracked. Contrary to the previous publication, only one type of transport
between different manufacturing sites is utilised in this model, i.e., road transport.

The manufacturing sites and customer sites are permanent, meaning that their
location will not change during the optimisation, only where production is placed at
the manufacturing sites will differ. The raw material supplier for product A will change
during the course of the simulation to handle the increase in volume needed from the
customers. Additional capacity will open up at a different geographical site than the
original source, which will affect the optimisation due to changing transport costs.

3.3.2 Optimisation setup

The optimisation is built in Python, using pymoo version 0.5.0 as the optimisation
backend, NSGA-III as the optimisation algorithm, and distributed with the use of the
Dask framework (Blank and Deb, 2020). Each manufacturing site, the main interest
of this use case, is allowed one to three production lines, LineA1−3 for product A
and LineB1−3 for product B, where LineAN ∈ {0, ..., 4} and LineBN ∈ {0, ..., 8}.
This means that the input variables are discrete, further complicating the optimisation
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problem. A demand of these products will need to be fulfilled to three customers over
six years (2025–2030). Three possible sites, each with six possible lines, over six years
gives in total 108 input variables. These input variables are named using the following
format: Y ear Site Line N with the permitted values shown in Table 1.

Table 1 Optimisation parameter ranges

Parameter Value

Year 2025, ..., 2030
Site Site1, Site2, Site3
Line LineA, LineB
N 1, 2, 3

For the optimisation, the goal of the study is to minimise five objectives, each with a
corresponding output variable:

1 TransportCost

2 InvestmentCost

3 RunningCost

4 ProductionLoss

5 OverProduction.

The first objective, TransportCost, summarises the transportation costs for each year
of production, this is a continuous variable and is measured in SEK. InvestmentCost
summarises the investments needed for setting up new production at the sites, this
is also a continuous variable and measured in SEK. Manning costs are summarised
in RunningCost, a continuous variable measured in SEK. The two last objectives,
ProductionLoss and OverProduction, are constraints used as objectives. ProductionLoss
quantifies the loss of production at the customer due to insufficient deliveries of
product A and product B, and OverProduction quantifies the number of extra products
manufactured each year, summarised for each year. By minimising the two last
objectives, the solution presented is regarded as resource efficient.

Increasing RunningCost for existing production lines or InvestmentCost for new
production lines will increase the production rate of the specific product. Depending
on the location of the new production and where the demand is located, an increase in
TransportCost can be incurred. On the other hand, if new production lines are opened
in closer proximity to the customer, TransportCost can be decreased. If the rate of
production becomes larger than the demand, this will lead to a negative effect on the
OverProduction objective.

As previously mentioned, the input variables are discrete, with 0 indicating that
the line is not installed nor operational. For LineAN , the setting LineAN = {1, ..., 4}
means increasingly longer operational time using shifts shown in Table 2. A higher
parameter value means more output, but also more running costs due to higher manning.
Investment cost is incurred when moving from LineAN = 0 to another value. A
constraint in this model is moving back from LineAN = {1, ..., 4} to LineAN = 0 is
not permitted, if the line has been installed it will need to be used.
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Table 2 Operating hours for LineAN and LineBN

Parameter value Hours per week

1 and 5 40
2 and 6 80
3 and 7 120
4 and 8 164

In the second case, LineBN , the parameter values are similar but divided in two
capacity steps with LineBN = 0 also representing not installed. The first capacity step
is represented by LineBN = {1, ..., 4}, with each value representing a different shift
pattern and where the working times are identical to LineAN , as shown in Table 2.
The second capacity step is represented by the values LineBN = {5, ..., 8}, and has
doubled the base capacity compared to LineBN = {1, ..., 4}. Moving from LineBN =
0 to LineBN = {1, ..., 8} is permitted but not moving from LineBN > 4 to LineBN <
4. If the parameter value is changed from LineBN ≤ 4 to LineBN > 4, an investment
cost is also incurred, representing the cost of extending the production line. These
constraints reduce the feasible space of the optimisation significantly and necessitate
the use of customised optimisation operators for crossover, mutation, selection, and
repair. The main reason behind customisation of the operators is to reduce the number
of infeasible solutions, as each solution needs to be evaluated several times in a
computationally expensive simulation model.

Due to the constraints noted above and the type of parameters, custom crossover and
mutation operators had to be created. To keep the feasibility of each production line over
all the years, the crossover operator handles input parameters in blocks of six, changing
them between parent solutions depending on the crossover probability. Mutation is also
affected to preserve the feasibility. If a parameter is selected for mutation, there are
two modes depending on if the parameter is zero or larger. If the value is zero, it will
randomly assign a number between the limits of the parameter, depending on which
production line is selected. If the value is above zero, the mutation operator will increase
or decrease by one while respecting the limits of each production line type, i.e., LineB
values are not permitted to go from LineBN = 4 to LineBN < 4. As the objective
values for InvestmentCost and RunningCost can be calculated, the main concern is the
TransportCost, ProductionLoss, and OverProduction objectives.

3.4 Site bottleneck case

The second industrial use case is the site bottleneck case (SBC). In this section, the
simulation model and optimisation will be presented. Sharing of the simulation model is
restricted due to the intellectual property of the participating company. The simulation
model represents a manufacturing site producing combustion engines and components
for heavy duty trucks and machinery. Due to the climate crisis and electrification of
the automotive industry, the site has to balance the production of traditional combustion
engines with the introduction of new electromobility products. As the complexity
increases in the production, SBO and KDO can assist in guiding improvement efforts
and transition into prescriptive analytics to better react to an increasingly changing world
and market.
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A schematic view of the site is shown in Figure 7. The site has two foundries where
melted material is cast into blanks for three types of products: cylinder heads, cylinder
blocks, and flywheels. After casting, the parts are deburred, cleaned, cylinder blocks
are painted, and then the products are machined in a number of machining lines (ML)
located in one of three machining centres (MC). Three product types are produced in
the site, P = {A,B,C}, each with two main components denoted as P1 and P2. For
some products, machining is done in parallel with MLs for the same product in several
MCs. Each ML or MC, depending on locality, has either a combined or separate finished
goods inventory (FGI). For example, in Figure 7, MLB25 denotes the ML for product
B, component 2, and line number 5.

Figure 7 Schematic layout of the site for the SBC case study (see online version for colours)
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From the MLs, the parts are either dispatched for export to other manufacturing sites or
assembled into complete engines in the assembly. Due to the size of the components,
the manufacturing area is large and MCs are dispersed requiring forklift transports
between the different buildings. Ordering relies on a pull method from assembly,
drawing material from intermediate FGI supplied from MLs and foundries. Planning
in the foundries is resource optimised to fully utilise the foundry capacity by running
batch production. The batch production requires larger storages between foundry and
machining to ensure a stable supply.

3.4.1 Simulation model

The discrete-event simulation model is built in Siemens Tecnomatix Plant Simulation
version 2201.003 using methods from Lidberg et al. (2019). A modelling technique is
utilised with which each manufacturing line can be represented using four simulation
objects and seven parameters while still retaining the characteristics of a more complex
model. The lower object count reduces the number of generated events in the
discrete-event simulation model and subsequently reduces the computational complexity.
This leads to a faster simulation model and the total optimisation time is also reduced.

The simulation model represents the main product flows and components in the
manufacturing site. Transports are modelled through the use of truck transports with
speeds depending on position, scale accurate roadways, and loading times based on
historical data. Shift times are specific for each production line, and the differences
between them lead to large buffers between the production.

3.4.2 Optimisation setup

The optimisation is built in Python, using pymoo version 0.5.0 as the optimisation
backend, NSGA-III as the optimisation algorithm, and distributed with the use of the
Dask framework (Blank and Deb, 2020). Identifying improvements to the manufacturing
site and its manufacturing facilities, in the form of manufacturing lines, is made through
optimisation and the SCORE method (Bernedixen et al., 2015).

The SCORE method uses the theory of constraints by Goldratt and Cox (1984) to
prescribe the removal of the limiting factors in the simulation model by SBO. Each
parameter value, in this optimisation, is derived from the cycle time, availability, mean
leadtime, max work in process, and average work in process of each manufacturing
line, and is represented by a Boolean value. A parameter value of zero indicates that
the parameter retains its original value, while a value of one sets the parameter to an
improved state, representing the removal of a constraint. For example, an improvement
for availability could be changing from a base value of 80%, to an improved value of
98%.

This improvement may be impossible to reach in the real system, but will give
an indication of the largest bottleneck in the system. For 20 manufacturing lines
and six parameters, gives 120 input variables across all products. The sum of these
improvements constitute a minimisation objective in the optimisation. The identification
of not only the bottleneck line, but also the bottleneck parameter of the line, offers
prescriptive analytics and creates a recipe for improvement efforts. The other objectives
are maximisation of throughput of the main product, variant B, combining the output
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from two parallel lines, and the minimisation of leadtime, measured in seconds, of
variant B. The objectives are as follows:

1 maximise output

2 minimise leadtime

3 minimise improvements

Maximising the output and minimising leadtime is correlated with maximising the
number of improvements. As improving all the parameters is not feasible, neither
technically nor financially for the company, the improvement objective should be
minimised. Objective three is therefore conflicting with objectives one and two.

The limitations of the optimisation study is the focus on the main product variant.
This is to reduce the complexity of the optimisation and the analysis. Product B is the
most important product due to the production volume.

4 Results

This section will present the knowledge-extraction process from two optimisation studies
on industrial use cases. The first in Subsection 4.1 and the second in Subsection 4.2,
using the open-source tool for reproducible knowledge extraction presented in Lidberg
et al. (2022) updated with requirements from industrial decision makers. The tool is
publicly available as version 0.0.1.9000 from Lidberg (2022).

4.1 Knowledge-extraction for MFC

The optimisation was run for 100 generations, with a population of 240, and produced
1076 Pareto-optimal solutions. Initial values were supplied as Site1 ProdA 1 = 4,
Site2 ProdA 1 = 2, and Site2 ProdB 1 = 5. Following the steps in Figure 1, the data
was imported in the open-source tool. Filtering and clustering were not used in this use
case as pre-processing steps.

Knowledge-extraction methods can be utilised to gain prescriptive analytics about
the MOO data. The knowledge can be encapsulated as rules or as connections between
the decision space and objective space. The ProductionLoss objective, i.e., the lack of
products delivered to the customer, is positive if products are missing and negative
if demands are met. To understand what differentiates solutions with positive and
negative values for ProductionLoss can help decision makers when deciding on the
manufacturing footprint. An analysis of the effect of ProductionLoss will be performed
with FPM using the open-source tool. The selected solutions matching the most
significant rule found by FPM can be seen in Figure 8.

From the requirements stated in Subsection 3.2, the number of alternatives when
taking a decision is important. A range of solutions is not desired by decision makers.
Instead, they want a limited set of solutions placed in a use case context. After the
knowledge extraction has been performed, the dataset is filtered on ProductionLoss <
700, as the remaining solutions are not deemed to be relevant to be implemented.

The use case context for MFC is an implementation plan for new production
across the different sites. As each use case can be highly unique, the analysis will
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need to be further developed outside of the open-source tool while still using the R
language. An example of this is shown in Figure 9, where Figure 9(a) represents the
minimum investment cost, Figure 9(b) the minimum transport cost, while Figure 9(c)
represents the minimum running cost in the filtered objective space. The solution in
Figure 9(a) shows a centralised approach with production concentrated in Site1. To
reduce RunningCost, investment into more localised production is necessary.

Figure 8 Solutions selected by the most significant rule: 2028 Site2 ProdA 1 = 0 and
2030 Site1 ProdB 2 > 2 and 2030 Site3 ProdA 1 = 2 (see online version
for colours)
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Comparing the objective function values for the two different solutions with minimum
values, shown in Table 3, InvestmentCost is directly proportional to RunningCost and
indirectly proportional to TransportCost. As new production capacity is installed, the
need for cross-site transportation is lower. For transporting, product B is more costly to
transport than product A.

Table 3 Comparing objective values for solutions with minimum TransportCost and with
minimum RunningCost

TransportCost InvestmentCost RunningCost Prod.Loss OverProd.

605.490 3,065 619.3 526 15,068.71
658.063 2,760 559.6 –334 15,253.14

Note: ProductionLoss and OverProduction, abbreviated for brevity.

All solutions after filtering can be seen in Figure 10, where an elbow effect is visible
in the upper-left graph, showing that lower transport costs are impossible to achieve
without investing in new production. InvestmentCost is primarily discrete due to the
costs for installing new production, but it also has some economy of scale, showing as
solutions not horizontally aligned with the remaining solutions.
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Figure 9 Alternative implementation plans for MFC, showing minimum solutions for three
objectives, (a) minimum InvestmentCost (b) minimum TransportCost (c) minimum
RunningCost (see online version for colours)
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Note: Filtered to ProductionLoss < 700.

The knowledge discovery process, using FPM, resulted in rules on how to minimise the
ProductionLoss in the manufacturing footprint. Along with the knowledge from these
rules, alternative implementation plans can be offered to the decision makers. The use
case context can be presented directly from the data in the form of an implementation
plan.

4.2 Knowledge-extraction for SBC

To analyse the data, the SBI method begins with a high-level clustering using decision
trees. Applying this to the SBC dataset, we get the rules seen in Figure 11, where the
leaf nodes represent four sequential cluster groups, seen in Figure 12. The percentages
in the leaf nodes represent how many solutions are in each group. Rules are extracted
from all available data in the optimisation, including the dominated solutions.

The most divisive rule, i.e., the rule that divides the solutions the most, is F11 Avb.
To further divide the dataset in four groups, the rules MLB21 CT and F12 Avb are
used. The first and second leaves are connected to a lower MinLT and higher MaxOut
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and MinImp, while the two rightmost leaves are connected to the opposite. The decision
maker can use this information to express their preference for either objective, e.g.,
wanting a lower number of improvements would therefore lead to improving F11 and
MLB21.

Figure 10 Remaining solutions after filtering ProductionLoss < 700
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Figure 11 Decision tree showing rules for the SBC (see online version for colours)
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Figure 12 Applied clusters from the decision tree (see online version for colours)
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Figure 13 Frequency of bottleneck parameter in Pareto-optimal solutions for SBC
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Figure 14 Potential increase in output by removing the biggest bottleneck in turn
(see online version for colours)
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The second analysis for the SBC data is a SCORE analysis resulting in a ranking
of bottlenecks, which allows for a prioritisation of improvements. See Figure 13 for
an analysis of the bottleneck parameters in SBC. The frequency bar chart shows
the prevalence of a parameter in the Pareto-optimal solutions. The more common a
parameter is, the more likely it is to be the biggest bottleneck in the complete system.
The most common parameter is MLB26 CT with 96.7% followed by MLB25 Avb with
86.0% and A1 Avb with 83.4% of solutions in the Pareto-optimal front. The main focus
should be placed on the MLs, with MLB26 focused on processing time improvements,
and MLB25 on increasing the availability of the line. As both MLB25 and MLB26 are
production lines following two parallel production lines, disturbances in MLB25 and
MLB26 has a higher performance effect on the total system. In assembly of the main
product, improvements to availability should be prioritised.

The potential improvements to output is shown in Figure 14 where the number of
improvements is compared to the relative increase in output. The potential improvement
is attained when completely removing a bottleneck and will probably not be possible to
reach in the real system. The improvements also points to the importance of removing
bottlenecks in the correct order for improving the output of the complete system.
Changing the order of the improvements would lead to suboptimal outcomes, and is
most likely the current unintended way of handling improvements. The open-source tool
supports these visualisations, but to deliver knowledge to the decision maker additional
effort external to the open-source tool is required.
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Figure 15 Improvements to be prioritised indicated in red, with parameters to improve for the
three greatest bottlenecks (see online version for colours)

The use case context of SBC is an improvement prioritisation for the manufacturing site,
seen in Figure 15. Improvements to be made are listed under the name of the production
line, along with the prioritisation of the bottleneck. The deeper shade of red, the more
prioritised the improvement. This gives a decision maker, aiming to increase the output
of the total system, help in prioritising the limited resources for improvement work.



478 S. Lidberg and A.H.C. Ng

5 Conclusions and future work

Multi-objective optimisation methods, such as NSGA-III, can iteratively optimise
simulation models by modifying model inputs. The outcome of the optimisation
process is a large optimisation dataset, which can be difficult to interpret. By applying
knowledge-extraction methods, such as FPM and SBI, important decision variables can
be identified. Knowledge-extraction methods can provide the name, as well as the value,
of important parameters in the form of rules. These rules provide recipes to a decision
maker on how to optimise their production processes according to the decision maker’s
preference. Industrial decision makers participating in this study expressed a preference
for more data-driven decisions, keeping options open until the decision should be made.
When the time for a decision comes, the number of alternatives should be limited and
presented in an appropriate context for the case.

Acquiring, modifying, analysing, extending, and improving closed-source software
is difficult or impossible and therefore the open-source application created is useful
to successfully replicate results. Reproducing the analysis is possible through the
transformation of steps in the analysis into R code. This is important for both
transparency and validity of research results, and helps mitigate one issue of
reproducibility in science. Having knowledge-extraction methods available through an
open-source tool also lowers the barrier of entry and is an important contribution to both
science and practice of this work. To demonstrate the utility of the open-source tool, it
was used in two industrial use cases, through which important knowledge was gained
about the systems studied.

For future research, finding not only the parameter to improve on the site level but
which equipment to improve on the production line level is of interest. One research
approach is automatic model generation for the production line and site level. By
collecting data from the actual system, models can be automatically created and updated,
allowing for continuously supplying decision support to decision makers. To increase
the scale of the optimisation, the removal of proprietary software from the optimisation
would also be needed. The prioritisation of SBC could be further improved by supplying
specific values, or thresholds, to reach for each parameter in the optimisation instead of
current Boolean values. Allowing the decision maker to identify when a bottleneck is
improved enough to continue with the bottleneck in the system. In addition, to further
improve the open-source tool, industrial practitioners should use and evaluate the tool
for their needs and their feedback should be recorded through a questionnaire.
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