Algerian Arabizi rumour detection based on morphosyntactic analysis Online publication date: Wed, 03-Jan-2024
by Chahnez Zakaria; Kamel Smaïli; Besma Sahnoun; Assia Chala; Radjaa Agagna; Célia Amirat
International Journal of Knowledge Engineering and Data Mining (IJKEDM), Vol. 8, No. 1, 2023
Abstract: Social networks have become a customary news media source in recent times. However, the openness and unrestricted way of sharing information on social networks fosters spreading rumours which may cause severe damages economically, socially, etc. Motivated by this, our paper focuses on the rumour detection problem in Algerian Arabizi. Studying linguistic rules of Algerian Arabizi, we propose a lemmatiser and a parser for analysing and standardising the text to produce better rumour detection models. An approach for classifying rumours and news in social networks based on emotions' expression and users' positions is proposed. The experiments were done on many ngram representations where the best one has reached more than 94% of F-score. In addition to that this research deals with resources creation for Algerian Arabizi which is an under-resourced dialect. A corpus and several lexicons have been built, which can be the subject of other works dealing with this dialect.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Data Mining (IJKEDM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com