

International Journal of Computational Science and
Engineering

ISSN online: 1742-7193 - ISSN print: 1742-7185
https://www.inderscience.com/ijcse

Investigation on the optimisation of Cholesky decomposition
algorithm based on SIMD-DSP

Huixiang Li, Huifu Zhang, Anxing Xie, Yonghua Hu, Wei Liang

DOI: 10.1504/IJCSE.2024.10061859

Article History:
Received: 17 March 2022
Last revised: 17 July 2022
Accepted: 18 July 2022
Published online: 25 January 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijcse
https://dx.doi.org/10.1504/IJCSE.2024.10061859
http://www.tcpdf.org

28 Int. J. Computational Science and Engineering, Vol. 27, No. 1, 2024

Copyright © 2024 Inderscience Enterprises Ltd.

Investigation on the optimisation of Cholesky
decomposition algorithm based on SIMD-DSP

Huixiang Li, Huifu Zhang, Anxing Xie,
Yonghua Hu* and Wei Liang
Hunan Key Laboratory for Service computing and Novel Software Technology,
School of Computer Science and Engineering,
Hunan University of Science and Technology,
Xiangtan, China
Email: 1449488105@qq.com
Email: hfzhang@hnust.edu.cn
Email: axie@mail.hnust.edu.cn
Email: huyh@hnust.cn
Email: wliang@hnust.edu.cn
*Corresponding author

Abstract: With the development of high-performance SIMD-DSP processors, corresponding
highly efficient algorithms for matrix decomposition play an important role in the hardware
performance of such processors. Cholesky decomposition is a fast decomposition method for
symmetric positive definite matrices, which is widely used in matrix inversion and linear
equation solving. According to the hardware characteristics of the FT-M7002 processors, in this
paper, we optimise the algorithm in several ways. If hardware has on-chip double-buffered
memory, the parallel process of DMA transmitting and calculating is specially designed, which
can hide most of the time cost of data movement and further improve the algorithm’s
performance. The experimental results based on the FT-M7002 processor show that the
performance of the optimised algorithm is 3.8~5.64 times that of the serial algorithm, and
1.39~2.14 times that of the TI library function.

Keywords: Cholesky decomposition; digital signal processor; DSP; single instruction multiple
data; SIMD.

Reference to this paper should be made as follows: Li, H., Zhang, H., Xie, A., Hu, Y. and
Liang, W. (2024) ‘Investigation on the optimisation of Cholesky decomposition algorithm based
on SIMD-DSP’, Int. J. Computational Science and Engineering, Vol. 27, No. 1, pp.28–35.

Biographical notes: Huixiang Li is a Master’s student at the School of Computer Science and
Engineering, Hunan University of Science and Technology. His research interest is algorithmic
parallel optimisation.

Huifu Zhang is a Professor at the School of Computer Science and Engineering, Hunan
University of Science and Technology. His research interest is embedded system application.

Anxing Xie is a Master’s student at the School of Computer Science and Engineering, Hunan
University of Science and Technology. His research interest is compilation technology.

Yonghua Hu is a Professor at the School of Computer Science and Engineering, Hunan
University of Science and Technology. His research interest is compilation technology and
parallel computing.

Wei Liang is a Professor at the School of Computer Science and Engineering, Hunan University
of Science and Technology. His research interest is trusted computing systems and integrated
circuit copyright protection.

1 Introduction
Digital signal processor (DSP) is widely used in the
fields of communication, radar, voice recognition, image
processing, etc. This benefits from its simple structure, low
power consumption, low price and easy programmability.

With the continuous development of large-scale integrated
circuits and information technology, the architecture of
DSP has also undergone significant changes. For
high-performance DSPs, the technologies single instruction
multiple data (SIMD), very long instruction word (VLIW),
multi-core and efficient storage technologies are mainly

 Investigation on the optimisation of Cholesky decomposition algorithm based on SIMD-DSP 29

used to provide high parallelism (Wang et al., 2011; Yu,
1996). In embedded systems, signal processing applications
with a large number of computing requirements have put
forward an urgent requirement for high-performance
computing (HPC), which drives the rapid development of
high-performance DSP processors with SIMD architecture
(Robelly et al., 2008). In the SIMD architecture processor,
multiple parallel units share a set of logic for fetching,
decoding, and dispatching. The control structure is simple,
which can effectively reduce the hardware cost and achieve
higher performance at lower power consumption. Thus,
SIMD-DSP is favoured by the HPC field, and its lower cost
and higher performance-to-power ratio can play a certain
advantage in mobile computing platforms (Yang et al.,
2021).

In recent years, many commercial processors include
some SIMD extension components and corresponding
instruction sets, such as Intel AVX instruction set
(Adriaansen et al., 2016), and ARM’s ENON instruction set
(Henrichs et al., 2009). Famous SIMD-DSP processors
include SODA (Lin et al., 2007) and AnySP (Woh et al.,
2009) proposed by Michigan University, Maven (Lee et al.,
2016) proposed by MIT University, BBE64 (Rowen et al.,
2011) proposed by Tensilica, FT-M7002 (Wang et al.,
2021) proposed by the National University of Defense
Technology, etc. As the continuous improvement of
hardware brings performance improvement, it also puts
forward higher requirements for the algorithm optimisation
of the upper-layer software library. Therefore, it is of great
significance to optimise the corresponding algorithm
program according to the hardware characteristics and give
full play to the hardware architecture advantages of the
high-performance SIMD-DSP processor.

Solving large-scale linear equation sets is an important
problem in the HPC field, and the matrix’s triangular
decomposition is often used to simplify the solution process.
The Cholesky decomposition is an important method for
trigonometric decomposition of positive definite symmetric
matrices. When compared with general LU decomposition,
its calculated amount is reduced by about half. Thus,
researchers have conducted extensive applied research on
Cholesky decomposition, both from the application and
optimisation aspects. The Cholesky decomposition
algorithm plays a critical role in many fields, such as image
processing (Xu et al., 2019), web service computing (Tang
et al., 2021), and other applications of matrix operation.

In the research on the application of the Cholesky
decomposition algorithm, Gao and Li (2015) proposed
an efficient parallel preprocessing conjugate gradient
algorithm, which optimises vector operations by dividing
multiple vector operations into multiple groups into a single
kernel, overcoming the disadvantage of the forward and
backward substitution that it is difficult to parallelise on the
GPU, and used Cholesky decomposition to solve large
sparse linear systems caused by numerical solutions of 3D
parabolic equations. To solve the problem that the
traditional extreme learning machine cannot overcome the
problem of sample noise and imbalance, Jin (2019) used the

KFCM algorithm combined with the proportion of the
samples to obtain the sample weight matrix, and used the
Cholesky decomposition to invert the matrix to speed up the
training process. Herholz and Sorkine-Hornung (2020)
proposed a novel linear solver for interactive parametric
tasks, enabling a seamless and interactive workflow by
updating the Cholesky decomposition of linear systems to
reflect the new boundary conditions. Nino-Ruiz et al. (2015)
presented an efficient parallel implementation of a Kalman
filter based on Cholesky decomposition, decomposing
a domain into multiple subdomains, and eliminating
inter-processor communication in subdomain computations.

In the research on the optimisation of the Cholesky
decomposition algorithm, Dorris et al. (2018) modified the
tiled Cholesky decomposition of PLASMA, used OpenMP
tasks as the scheduling mechanism, and introduced the
algorithm optimisation in the Intel Xeon Phi architecture
processor in detail. Haidar et al. (2017) developed efficient
code executed entirely by GPU, addressing the tuning
challenges associated with the communication between
CPU and GPU. Lemaitre et al. (2018) proposed a code
generator that directly generates SIMD codes for the
Cholesky decomposition of small matrices and Kalman
filters. Liu et al. (2016) analysed the data dependencies of
Cholesky decomposition based on the field programmable
gate array (FPGA) and studied the fine-grained pipeline
parallel structure and implementation of Cholesky
decomposition. Shen and Dai (2019) and others optimised
the Cholesky decomposition algorithm by improving the
utilisation of local memory in the heterogeneous system of
CPU + GPU.

Although the above kind of literature has achieved good
results in the optimisation of Cholesky decomposition, they
have ignored the optimal implementation on SIMD-DSPs,
and the existing optimisation methods cannot adapt to the
structure of high-performance SIMD-DSPs. In this paper,
we first utilised the symmetry of a positive definite matrix,
and used the upper triangular matrix calculation instead of
the lower triangular matrix calculation to obtain the
transposed result matrix LT to avoid discontinuous access to
the memory. Then, we build a direct memory access (DMA)
double-buffered transmitting model, and hide the latency
between computation and data movement in the calculation
process. Besides, we use the vector shuffling unit to realise
the effect of broadcasting a single value as a vector. We also
use generalised optimisation methods such as loop unrolling
and software pipelining to exploit the instruction-level
parallelism of the algorithm fully. We evaluate our
optimised algorithm of Cholesky decomposition based
on vector SIMD-DSP, and demonstrate the significant
performance improvement for the corresponding serial
algorithm and the corresponding library functions of the TI.

2 Basic principles of Cholesky decomposition
algorithm

The Cholesky decomposition is defined as for a positive
definite symmetric matrix A = [aij], there is a unique lower

30 H. Li et al.

triangular matrix L whose main diagonal elements are
positive, and L satisfies

TA LL= (1)

where LT is the transpose matrix of L. According to
equation (1), a positive definite symmetric matrix A can be
written as (Golub and Loan, 1986)

1111 110
0

T T T

T

LA B L S
A

S LB C L
    

= =    
    

 (2)

and according to the characteristics of partitioned matrices
multiplication, we have

()11 11

11
T

T T

L cholesky A
S B L
L L C S S

−

=
= ×
× = − ×

 (3)

For the submatrix C in equations (2) and (3), it can be
viewed as a new input matrix, and we can continue to
partition it. This process can be done recursively according
to equation (3) until that C is smaller than A11 in size. Then,
the final result matrix will be obtained. It is a partitioning
solution method, and the calculation process of the
Cholesky decomposition of the partitioned matrix is shown
in Figure 1. As seen in Figure 1, the size of new matrix A
will decrease with decomposition in the Cholesky
decomposition algorithm.

Figure 1 Cholesky decomposition flowchart

Treat the C matrix as a new A
matrix and continue to block

until C is less than A

L11

Ajj

CB

L11

Ljj

CB

Ljj=cholesky(Ajj)

S=B*Ljj
-T

L11

Ljj

CS

L11

Ljj

CS

C=C-S*ST

In the calculation process, the access of data in the
on-chip data cache is much faster than that of data in an
independent memory chip, so we need to transmit the data
in memory to the on-chip data cache before calculating
them. However, for the large matrix case, it may not be
possible to put the entire input matrix into the processor’s
on-chip cache at the beginning of Cholesky decomposition.
If the on-chip cache can double-buffering, we can develop
an optimisation for the data transmitting, which allows the
transmitting of some data to be parallelised with the
calculation of other data. This parallel processing can

continue until A can be placed completely in the on-chip
data cache.

3 Implementation and optimisation of Cholesky
decomposition based on vector SIMD-DSP

3.1 Generation method of upper triangular matrix
based on Cholesky decomposition according to
vector memory access characteristics

For a vector SIMD processor, its vector length is fixed.
Thus, if the size of a matrix is inconsistent with the vector
length during data processing, we will face the data
misalignment problem when we implement the Cholesky
decomposition algorithm for the vector SIMD processor.
During the calculation process, the number of data to
calculate (i.e., calculation width) being smaller than the
vector length will occur in the Cholesky decomposition of
matrix Ajj. It is the so-called short vector problem. The
handling of the short vector is a considerable part of the
whole work of the Cholesky decomposition for submatrix,
and it wastes some computing power of the processor.
Therefore, we set the Ajj in Figure 1 as a diagonal element to
implement the Cholesky decomposition algorithm for the
vector SIMD processor. Then, the formula

()jj jjL cholesky A= (4)

can be replaced by

.jj jjl a= (5)

In the generation algorithm for the lower triangular matrix
of Cholesky decomposition, the updating of columns will
discontinuously access corresponding memory units. The
efficiency of this discontinuous access is very low, only
1/15 of the efficiency of continuous access (Cupertino et al.,
2010). It will greatly influence the algorithm’s performance
when the on-chip cache of a vector SIMD processor can be
accessed parallelly by the processing elements of SIMD
unit. Therefore, to map the generation algorithm to a vector
SIMD processor, it is necessary to convert discontinuous
memory access to continuous access.

Considering the symmetric geometric characteristics of
matrix A, the upper triangular matrix LT can be generated
according to the same calculation principle to replace the
lower triangular matrix L. When using L, it is only
necessary to replace the access of the element L[i, j] of the
lower triangular matrix with the access of the element
LT[j, i] of the upper triangular matrix. By this conversion,
the column updating in the calculation process of generating
the lower triangular matrix is changed into the row updating
in generating the upper triangular matrix. Because the data
in a row are continuously stored in the cache, the algorithm
can calculate them parallelly. The process of calculating the
lower triangular matrix and that of calculating the upper
triangular matrix is shown in Figure 2, where ‘x’ represents
irrelevant matrix elements.

 Investigation on the optimisation of Cholesky decomposition algorithm based on SIMD-DSP 31

Figure 2 Schematic diagram of generating upper triangular
matrix and lower triangular matrix

l11

l21

l31

l41

a21

a31

a41

a11

l22

l32

l42

l33

l43 l44

x

x

x

x

x

x l11

x

x

x

l22

x

x

l33

x l44

l12

l23

l13

l34

l24

l14a11

a12 a13 a14

Column transformation of L
Row transformation of LT

In the process of generating the matrix LT, A will be updated
several times (which is decided by the row number of A).
As seen in Figure 2, a cycle of updating A can be divided
into the following steps:

1 updating the corresponding diagonal element

2 updating other elements in the row where the diagonal
elements are located

3 updating the corresponding submatrix.

Section 3.2 will introduce specific optimisation methods for
these three steps.

3.2 Optimisations for Cholesky decomposition

3.2.1 Reusing the data of diagonal element
calculation

The method for calculating the square root of the diagonal
elements is: firstly, the vector process element (VPE) loads
the diagonal element ajj of the first row of the current A.
Then, we calculate the reciprocal square root 1

jjl− of ajj, and

then we use the reciprocal of 1
jjl− to get the new value of

diagonal element ljj. In order to ensure the precision of the
reciprocal square root, the Newton-Rhason iteration formula
can be used. The iterative formula to calculate the reciprocal
square root is shown in equation (6), where X[n] is the
initial reciprocal square root of v, and X[n + 1] is the result
after iteration. The iterative formula to calculate the
reciprocal is shown in equation (7), where X[n] is the initial
reciprocal of v, and X[n + 1] is the result after the iteration.
For each iterative formula, the precision will be doubled if
used once.

()[1] [] 1.5 (/ 2) [] []X n X n v X n X n+ = − × × (6)

()[1] [] 2 []X n X n v X n+ = − × (7)

The intermediate data 1
jjl− obtained in the above calculation

process can be preserved in the register for the update of
other elements in the first row in Section 3.2.2, which
allows converting the corresponding division into
multiplication there.

3.2.2 Vectorisation of updating the rows of matrix
The shuffling unit is generally equipped in a SIMD
processor to implement copying data at the register level in
the vector processing unit. For certain source vectors, by
configuring a specific shuffling mode, we can obtain a new
vector from different source vectors. The value of the
elements in the result vector can be from any element of
other vectors. In the update process of other elements in the
row where the diagonal element of the current A is located,
the 1

jjl− calculated in Section 3.2.1 is copied to all VPEs for
subsequent calculations by shuffling. This process is shown
in Figure 3.

Figure 3 Broadcast flowchart of a single element in a vector

ljj
-1

x

x

x

shuffle

ljj
-1

ljj
-1

ljj
-1

ljj
-1

x

src dst

For updating other elements in the row corresponding to the
diagonal element, other elements except for the diagonal
element in this row will be loaded into vectors and
multiplied by 1.jjl− This calculation process is shown in
Figure 4, where dst = src1 ∗ src2, and dst, src1 and src2 are
vectors which can be processed in SIMD unit. Moreover,
further data-level parallelism can be exploited through loop
optimisation methods such as loop unrolling and software
pipelining.

Figure 4 The updating flowchart of the row corresponding to a
diagonal element

ljj aji aji+13 ajk

aji+14 aji+15aji+13aji

lji
-1 lji

-1lji
-1lji

-1

aji+14 aji+15

load

x

Line of diagonal

src1

src2

aji

lji
-1

lji+14 lji+15lji+13ljidst
= Move the

pointer right

3.2.3 Vectorisation of updating submatrix
The updating of the submatrix corresponding to a diagonal
element can be divided into a series of sub-processes, each
of which updates a row of the matrix. Assuming that the
first row of the current A is a part of the row j of the whole
matrix, and the row of the currently updated submatrix is a
part of row i of the whole matrix, the updating process of a
row of the submatrix is shown in Figure 5.

32 H. Li et al.

Figure 5 Process of updating submatrix

ljj aji aji+13 ajk

aji+14 aji+15aji+13aji

aji ajiajiaji

aji+14 aji+15

Load
Line of diagonal

src1

src2

aii aii+13 aikaii+14 aii+15

aii+14 aii+15aii+13aii

Load

aji

lii+14 lii+15lii+13liidst
=

src3

Shuffle

x
Move the

pointer right

Move the
pointer right

The update of a row in the submatrix in Figure 5 can be
described as the following steps:

1 Taking out the aji element and expanding it with the
shuffling method in Figure 3 to obtain src2.

2 Taking out all the elements of the jth row in turn to
obtain src1.

3 Taking out all the elements of row i in turn to get src3.

4 Calculating the result values by formula dst = src3
– src2 ∗ src1, and then writing dst into its
corresponding position in the matrix.

3.2.4 Parallel optimisation of DMA transmission and
computation for large matrix

DMA provides a high-speed data transfer path, enabling
access to specific memory resources according to pre-
configured parameters. For the Cholesky decomposition of
large matrices, if the on-chip cache of the processor cannot
accommodate the entire input matrix, the decomposition
process must exchange data between the cache and the off-
chip memory multiple times. Assuming that the on-chip
cache has a ‘ping-pong’ storage function, a DMA
double-buffered transmitting model can be constructed to
realise the parallelisation of the two processes of calculation
and DMA transmitting, reducing the special time overhead
of data movement in the calculation process. The DMA
double-buffered transmitting model is as follows: the
on-chip cache is divided into two parts, such as buffer0 and
buffer1; for each part, the space is used to store the first row
of the current A and a part of the corresponding submatrix
C. The steps of the whole calculation process are as follows:

1 Transmit the first row of the current A into the
corresponding areas in buffer0 and buffer1 by DMA.

2 Computes the diagonal elements stored in buffer0 and
buffer1.

3 Update elements in the first row of the current A,
except the diagonal element.

4 Transmit the content of the corresponding submatrix C
part by part into the buffer0 or the buffer1 in turn for
calculation.

5 Consider the matrix C as a new matrix A, and judge
whether A can be put into the on-chip cache. If not, skip
to Step 1. Otherwise, continue to execute the next step.

6 Transmit all the data of A to the on-chip cache for
calculation.

The parallel processing principle of DMA transmission
and calculation for updating the submatrix is shown in
Figure 6.

Figure 6 Matrix update calculation and DMA parallel graph

l11

C line of diagonal

line of diagonal

DMA
buffer0

buffer1
calculate

l11

C line of diagonal

line of diagonal

DMA

buffer0

buffer1

calculate

4 Experimental result analysis
This section describes the performance improvement of the
Cholesky decomposition optimisation algorithm over the
standard Cholesky decomposition serial algorithm on the
FT-M7002 processor. Besides, to reflect the performance
of the optimised Cholesky decomposition algorithm
for the FT-M7002 processor, the library function
DSPF_sp_cholesky algorithm of TI’s TMS320C6678
processor was introduced as a comparison.

4.1 Experimental environment

4.1.1 FT-M7002 processor
FT-M7002 is a 40 nm high-performance DSP processor
independently developed by the National University of
Defense Technology. It integrates 1 RISC CPU core and
2 FT-MT2 DSP cores on the chip, and the entire processor
uses a three-level storage structure. A single DSP core has
32 kb scalar storage space scalar memory (SM) and 512 kb
vector storage space vector memory (VM). When running
at 1 GHZ, the peak double-precision floating-point
performance is up to 100 GFLOPS, and the peak
single-precision floating-point performance is up to
200 GFLOPS (Wang et al., 2021).

The DSP core of the FT-M7002 processor is based on
the VLIW structure, including a scalar processor unit SPU
(scalar process unit) and a vector processing unit VPU
(vector process unit). These two processing units are tightly

 Investigation on the optimisation of Cholesky decomposition algorithm based on SIMD-DSP 33

coupled (Chen et al., 2021). The instruction dispatching
component can provide instructions for SPU and VPU
simultaneously. The SPU mainly performs serial instruction
execution and flow control of the entire program. The VPU
consists of 16 vector computing engines (VPE), which
support up to 16 channels of 32 bit data. The VPU performs
vector operations and provides parallel processing mainly
for intensive calculations. The DMA can do fast data
exchange between out-of-core DDR and SM or VM. When
the memory access operations do not conflict, the VM can
support two vectors read/writes simultaneously and
two DMA read/writes requests. DMA transmitting and VM
access can be implemented in parallel through reasonable
data arrangement.

4.1.2 TMS320C6678 processor
TMS320C6678 is an eight-core processor released by TI
in November 2010. Each core has both fixed-point and
floating-point computing capabilities. It has 32 KB level 1
data (L1D) SRAM, 32 KB level 1 program (L1P) SRAM,
and 512 KB local level 2 (LL2) SRAM. At the core
frequency of 1.25 GHz, the fixed-point computing
capability of a single core can reach 40 GMAC/s, and the
floating-point computing capability of a single core can
reach 20 GFLOPS/s (Zhou et al., 2014). It has been widely
used in sonar, radar, communications, and other fields that
require high fixed-floating-point computing capability and
real-time performance.

TI has efficiently implemented library functions for its
DSP series chips, including general and some special fields.
TI has done a lot of algorithm optimisation according to its
algorithm characteristics and chip structure characteristics
and maximises the execution efficiency of library functions
through the manual assembly. DSPF_sp_cholesky is a
function in TI’s DSP library. Therefore, the execution
efficiency of DSPF_sp_cholesky represents the highest
execution efficiency of the Cholesky decomposition
algorithm on this kind of DSP processor. It is more
convincing to compare the performance of the optimisation
algorithm in this paper with it.

4.1.3 Testing method
For the Cholesky decomposition optimisation algorithm and
the Cholesky decomposition serial algorithm implemented
on the FT-M7002 processor, the parallelism of code is
ensured by assembly encoding. To get the execution cycle
for the algorithm, related timing functions for the on-chip
timer function are called. The performance of the
TMS320C6678 processor is measured by calling the
corresponding library function DSPF_sp_cholesky in the
CCS5.5.0 simulator, and the execution cycle number of this
library function is measured by calling the timing function.
The parameters of the experimental platform are shown in
Table 1.

Table 1 Experimental platform parameters

Platform FT-M7002 TMS320C6678

Frequency / GHz 1.0 1.25
LID / KB 32 32
AM / KB 512 -
Software platform FT-M7002 IDE CCS5.5.0

4.2 Performance analysis
For the small matrix case, the whole matrix can be
transmitted into the vector buffer VM at one time in the
FT-M7002 processor, and there is no need for DMA
transmission and parallel computing processing during the
processing. In this paper, the Cholesky decomposition is
analysed experimentally for small matrices of order 128,
order 160, order 192, order 228 and order 256. For these
small matrix sizes, the corresponding cycle numbers
obtained from the tests are shown in Table 2.

Table 2 Cycle number of the Cholesky decomposition
algorithm in the mall matrix case

Matrix
size

Serial
algorithm

Optimised
algorithm

TI library
functions

128 3,621,520 977,296 1,358,861
160 6,807,840 1,595,968 2,304,982
192 11,463,920 2,400,688 4,274,809
224 17,855,808 3,403,616 6,759,964
256 26,316,144 4,659,808 9,989,944

Table 2 shows the acceleration ratios of the optimised
Cholesky decomposition algorithm relative to the TI library
function and the basic serial algorithm shown in Figure 7. It
can be seen from Figure 7 that, as the matrix size increases,
the speedup ratio of the optimised Cholesky decomposition
algorithm relative to the serial algorithm and that to the TI
library function increases steadily. In the above five groups
of small-scale matrices, the speedup ratio of the
optimisation algorithm relative to the basic serial algorithm
is 3.8~5.64, and the speedup ratio of the optimisation
algorithm relative to the TI library function is 1.39~2.14. It
shows that the speedup effect by using the optimised
Cholesky decomposition algorithm of this paper is obvious.

For the large matrix case, Figure 8 shows the
acceleration ratio of Cholesky decomposition optimisation
algorithm relative to the corresponding serial algorithm
under the matrix sizes of 512th order, 768th order, 1,024th
order, 1,280th order and 1,536th order.

As seen from Figure 8, as the size of the matrix
increases, the advantage of the Cholesky decomposition
algorithm that combines the optimisation of vector parallel
computing and the optimisation of DMA double-buffered
transmitting becomes greater. For the five input matrix sizes
shown in Figure 8, a speedup of 7.8 to 14.1 times is
achieved.

34 H. Li et al.

Figure 7 Acceleration ratio of Cholesky decomposition in the
small matrix case

0

1

2

3

4

5

6

128 160 192 224 256

sp
ee

du
p

ra
tio

matrix size/order

Optimized Algorithm VS. TI library function
Optimized Algorithm VS. Serial Algorithm

Figure 8 Acceleration ratio of Cholesky decomposition
optimisation algorithm to serial algorithm in the large
matrix case

0

5

10

15

512 768 1024 1280 1536

sp
ee

du
p

ra
tio

matrix size/order

Optimized Algorithm VS. Serial Algorithm

For the accuracy of the decomposition result, we
note that corresponding calculating instructions of
architecture mainly decide this, and we just focus on the
instruction-level parallelisation of the algorithm. For the
FT-M7002 processor, we take the case that the input matrix
order is 128 as an example. The average relative error
between TMS320C6678 and FT-M7002 is 4.6749 × 10–5. It
demonstrates that our method is also effective and correct.

This section uses small-scale and large-scale matrices
to demonstrate the effect of the optimised Cholesky
decomposition algorithm on the FT-M7002 processor.
The corresponding TI library function is introduced for
comparative analysis. The experimental results show that
the algorithm proposed in this paper has better performance.
The performance improvement reasons are mainly as
follows: firstly, we utilised the vector processing unit to
calculate the data in parallel. This unit in the FT-M7002
processor has 16 VPEs. Besides, optimisation methods such
as loop unrolling and software pipelining are used in our
code. Secondly, we utilised the symmetry of the input
positive definite matrix, and used the upper triangular
matrix calculation instead of the lower triangular matrix
calculation to obtain the result matrix LT. It allows
the algorithm to avoid discontinuous access to the
memory. Thirdly, taking advantage of the double-buffered
mechanism of the VM cache in the FT-M7002 processor,
we realised the parallel processing of the two processes of
calculation and data transmitting. In a word, the
optimised method in this paper can take advantage of the

architecture characteristics of vector DSP and brings good
instruction-level parallelism to the algorithm.

5 Conclusions
Considering the hardware characteristics of
high-performance SIMD-DSP processors, this paper
proposed an optimisation algorithm of the Cholesky
decomposition. According to the structural characteristics of
the result matrix of Cholesky decomposition, the LT matrix
is generated, and the column update in the calculation
process of generating the lower triangular matrix is replaced
by the row update in the calculation process of generating
the upper triangular matrix, which avoids the discontinuous
access to the memory. While updating the matrix, the vector
shuffling unit is used to realise the effect of broadcasting a
single value as a vector. In this algorithm, the optimisation
methods such as loop unrolling and software pipelining can
also be used to develop better instruction-level parallelism.
The experimental results on the FT-M7002 processor show
that the optimised algorithm has a speedup ratio of 3.8~5.64
compared to the corresponding serial algorithm and a
speedup ratio of 1.39~2.14 compared to the corresponding
TI library functions. These results show that this paper’s
Cholesky decomposition optimisation algorithm is effective
on SIMD-DSP processors. Though the optimisation
algorithm of Cholesky decomposition in this paper is for the
single-core case of vector DSP, it is helpful further to
research the corresponding optimisation algorithm for
multi-core situations.

Acknowledgements
This work was supported by Research Projects of Hunan
Provincial Department of Education (No. 20B242 and
No. 19A169) and Hunan Provincial Natural Science
Foundation (No. 2017JJ3087).

References
Adriaansen, M., Wijtvliet, M., Jordans, R. et al. (2016) ‘Code

generation for reconfigurable explicit datapath architectures
with LLVM’, IEEE Digital System Design, pp.30–37,
DOI: 10.1109/DSD.2016.88, https://ieeexplore.ieee.org/
document/7723532.

Chen, Y., Wang, M.Y., Chai, X.N. et al. (2021) ‘Optimization
of Gaussian filtering algorithm on FT-M7002’, Computer
Engineering, Vol. 43, No. 5, pp.799–806.

Cupertino, L.F., Pacheco, M., Farias, R. et al. (2010) ‘LU
decomposition on GPUs: the impact of memory access’,
IEEE International Symposium on Computer Architecture &
High Performance Computing Workshops, pp.19–24.

Dorris, J., YarKhan, A., Kurzak, J. et al. (2018) ‘Task based
Cholesky decomposition on Xeon Phi architectures using
OpenMP’, International Journal of Computational Science
and Engineering, Vol. 17, No. 3, pp.310–323.

 Investigation on the optimisation of Cholesky decomposition algorithm based on SIMD-DSP 35

Gao, J.B. and Li, B. (2015) ‘A Cholesky preconditioned conjugate
gradient algorithm on GPU for the 3D parabolic equation’,
International Journal of Computational Science and
Engineering, Vol. 11, No. 4, pp.339–348.

Golub, G. and Loan, A. (1986) ‘Matrix computations’,
Mathematical Gazette, Vol. 83, No. 498, pp.556–557.

Haidar, A., Abdelfatah, A., Tomov, S. et al. (2017)
‘High-performance Cholesky decomposition for GPU-only
execution’, Proceedings of the General Purpose GPU,
pp.42–52.

Henrichs, P.M., Whitlock, L.R., Sochor, A.R. et al. (2009)
Cortex-A9 Technical Reference Manual.

Herholz, P. and Sorkine-Hornung, O. (2020) ‘Sparse Cholesky
updates for interactive mesh parameterization’, ACM Trans.
Graph, Vol. 39, No. 6, pp.67–77.

Jin, Z.J. (2019) ‘SAR target recognition based on Cholesky
decomposition weighted kernel extreme learning machine’,
Proceedings of the 2019 3rd International Conference on
Advances in Image Processing, Association for Computing
Machinery, pp.40–44.

Lee, Y., Avizienis, R., Bishara, A. et al. (2016) ‘The Maven
vector-thread architecture’, 2011 IEEE Hot Chips 23
Symposium (HCS), p.1.

Lemaitre, F., Couturier, B. and Lacassagne, L. (2018) ‘Small
SIMD matrices for CERN high throughput computing’,
Proceedings of the 2018 4th Workshop on Programming
Models for SIMD/Vector Processing, pp.1–8.

Lin, Y., Lee, H., Who, M. et al. (2007) ‘SODA:
a high-performance DSP architecture for software-defined
radio’, IEEE Micro, Vol. 27, No. 1, pp.114–123.

Liu, S.Y., Lin, J.Y., Wu, Y.X. et al. (2016) ‘Cholesky
decomposition and parallel structure design based on matrix
triangularization decomposition’. Journal of Tsinghua
University, Vol. 56, No. 9, pp.963–968.

Nino-Ruiz, E.D., Sandu, A. and Deng, X.W. (2015) ‘A parallel
ensemble Kalman filter implementation based on modified
Cholesky decomposition’, Proceedings of the 6th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale
Systems, Association for Computing Machinery, pp.1–8.

Robelly, J.P., Cichon, G., Ahlendorf, H. et al. (2008) ‘A HW/SW
design methodology for embedded SIMD vector signal
processors’, International Journal of Embedded Systems,
Vol. 3, No. 3, pp.160–169.

Rowen, C., Dan, N., Ravindran, R. et al. (2011) ‘The world’s
fastest DSP core: breaking the 100 GMAC/s barrier’, 2011
IEEE Hot Chips 23 Symposium (HCS), pp.1–25.

Shen, Y. and Dai, Y.X. (2019) ‘Parallel Cholesky decomposition
and its application based on GPU’, Computer Engineering,
Vol. 45, No. 2, pp.284–289.

Tang, B., Tang, M., Xia, Y. and Hsieh, M.Y. (2021) ‘Composition
pattern-aware web service recommendation based on depth
factorisation machine’, Connection Science, Vol. 33, No. 4,
pp.870–890.

Wang, J., Sohl, J., Kraigher, O. et al. (2011) ‘ePUMA: embedded
parallel DSP processor architecture with unique memory
access’, IEEE Information Communications and Signal
Processing, pp.1–5, https://ieeexplore.ieee.org/document/
617351610.1109/ICICS.2011.6173516.

Wang, Y., Li, C., Liu, C. et al. (2021) ‘Advancing DSP into HPC,
AI, and beyond: challenges, mechanisms, and future
directions’, CCF Transactions on High Performance
Computing, pp.114–125, https://doi.org/10.1007/s42514-020-
00057-2.

Woh, M., Seo, S., Mahlke, S. et al. (2009) ‘AnySP: anytime
anywhere anyway signal processing’, ACM SIGARCH
Computer Architecture News, pp.128–139.

Xu, J., Ma, N., Ke, J., Yang, E.J. and Feng, S. (2019) ‘A fast video
haze removal algorithm via mixed transmissivity
optimisation’, International Journal of Embedded Systems,
Vol. 11, No. 1, pp.84–93.

Yang, X., Tan, Z. and Luo, Z. (2021) ‘Deep learning in mobile
computing: architecture, applications, and future challenges’,
Mobile Information Systems, pp.1–3, https://doi.org/10.1155/
2021/9874724.

Yu, A. (1996) ‘The future of microprocessor’, IEEE Micro,
Vol. 54, No. 5, pp.67–77.

Zhou, P., Zhou, W.C. and Wang, K.K. (2014) ‘Research on the
performance of TMS320C6678 multicore DSP parallel
memory access’, Microcomputer & its Applications, Vol. 33,
No. 13, pp.20–24.

