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Abstract: With the development of high-performance SIMD-DSP processors, corresponding 
highly efficient algorithms for matrix decomposition play an important role in the hardware 
performance of such processors. Cholesky decomposition is a fast decomposition method for 
symmetric positive definite matrices, which is widely used in matrix inversion and linear 
equation solving. According to the hardware characteristics of the FT-M7002 processors, in this 
paper, we optimise the algorithm in several ways. If hardware has on-chip double-buffered 
memory, the parallel process of DMA transmitting and calculating is specially designed, which 
can hide most of the time cost of data movement and further improve the algorithm’s 
performance. The experimental results based on the FT-M7002 processor show that the 
performance of the optimised algorithm is 3.8~5.64 times that of the serial algorithm, and 
1.39~2.14 times that of the TI library function. 
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1 Introduction 
Digital signal processor (DSP) is widely used in the  
fields of communication, radar, voice recognition, image 
processing, etc. This benefits from its simple structure, low 
power consumption, low price and easy programmability. 

With the continuous development of large-scale integrated 
circuits and information technology, the architecture of  
DSP has also undergone significant changes. For  
high-performance DSPs, the technologies single instruction 
multiple data (SIMD), very long instruction word (VLIW), 
multi-core and efficient storage technologies are mainly 
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used to provide high parallelism (Wang et al., 2011; Yu, 
1996). In embedded systems, signal processing applications 
with a large number of computing requirements have put 
forward an urgent requirement for high-performance 
computing (HPC), which drives the rapid development of 
high-performance DSP processors with SIMD architecture 
(Robelly et al., 2008). In the SIMD architecture processor, 
multiple parallel units share a set of logic for fetching, 
decoding, and dispatching. The control structure is simple, 
which can effectively reduce the hardware cost and achieve 
higher performance at lower power consumption. Thus, 
SIMD-DSP is favoured by the HPC field, and its lower cost 
and higher performance-to-power ratio can play a certain 
advantage in mobile computing platforms (Yang et al., 
2021). 

In recent years, many commercial processors include 
some SIMD extension components and corresponding 
instruction sets, such as Intel AVX instruction set 
(Adriaansen et al., 2016), and ARM’s ENON instruction set 
(Henrichs et al., 2009). Famous SIMD-DSP processors 
include SODA (Lin et al., 2007) and AnySP (Woh et al., 
2009) proposed by Michigan University, Maven (Lee et al., 
2016) proposed by MIT University, BBE64 (Rowen et al., 
2011) proposed by Tensilica, FT-M7002 (Wang et al., 
2021) proposed by the National University of Defense 
Technology, etc. As the continuous improvement of 
hardware brings performance improvement, it also puts 
forward higher requirements for the algorithm optimisation 
of the upper-layer software library. Therefore, it is of great 
significance to optimise the corresponding algorithm 
program according to the hardware characteristics and give 
full play to the hardware architecture advantages of the 
high-performance SIMD-DSP processor. 

Solving large-scale linear equation sets is an important 
problem in the HPC field, and the matrix’s triangular 
decomposition is often used to simplify the solution process. 
The Cholesky decomposition is an important method for 
trigonometric decomposition of positive definite symmetric 
matrices. When compared with general LU decomposition, 
its calculated amount is reduced by about half. Thus, 
researchers have conducted extensive applied research on 
Cholesky decomposition, both from the application and 
optimisation aspects. The Cholesky decomposition 
algorithm plays a critical role in many fields, such as image 
processing (Xu et al., 2019), web service computing (Tang 
et al., 2021), and other applications of matrix operation. 

In the research on the application of the Cholesky 
decomposition algorithm, Gao and Li (2015) proposed  
an efficient parallel preprocessing conjugate gradient 
algorithm, which optimises vector operations by dividing 
multiple vector operations into multiple groups into a single 
kernel, overcoming the disadvantage of the forward and 
backward substitution that it is difficult to parallelise on the 
GPU, and used Cholesky decomposition to solve large 
sparse linear systems caused by numerical solutions of 3D 
parabolic equations. To solve the problem that the 
traditional extreme learning machine cannot overcome the 
problem of sample noise and imbalance, Jin (2019) used the 

KFCM algorithm combined with the proportion of the 
samples to obtain the sample weight matrix, and used the 
Cholesky decomposition to invert the matrix to speed up the 
training process. Herholz and Sorkine-Hornung (2020) 
proposed a novel linear solver for interactive parametric 
tasks, enabling a seamless and interactive workflow by 
updating the Cholesky decomposition of linear systems to 
reflect the new boundary conditions. Nino-Ruiz et al. (2015) 
presented an efficient parallel implementation of a Kalman 
filter based on Cholesky decomposition, decomposing  
a domain into multiple subdomains, and eliminating  
inter-processor communication in subdomain computations. 

In the research on the optimisation of the Cholesky 
decomposition algorithm, Dorris et al. (2018) modified the 
tiled Cholesky decomposition of PLASMA, used OpenMP 
tasks as the scheduling mechanism, and introduced the 
algorithm optimisation in the Intel Xeon Phi architecture 
processor in detail. Haidar et al. (2017) developed efficient 
code executed entirely by GPU, addressing the tuning 
challenges associated with the communication between 
CPU and GPU. Lemaitre et al. (2018) proposed a code 
generator that directly generates SIMD codes for the 
Cholesky decomposition of small matrices and Kalman 
filters. Liu et al. (2016) analysed the data dependencies of 
Cholesky decomposition based on the field programmable 
gate array (FPGA) and studied the fine-grained pipeline 
parallel structure and implementation of Cholesky 
decomposition. Shen and Dai (2019) and others optimised 
the Cholesky decomposition algorithm by improving the 
utilisation of local memory in the heterogeneous system of 
CPU + GPU. 

Although the above kind of literature has achieved good 
results in the optimisation of Cholesky decomposition, they 
have ignored the optimal implementation on SIMD-DSPs, 
and the existing optimisation methods cannot adapt to the 
structure of high-performance SIMD-DSPs. In this paper, 
we first utilised the symmetry of a positive definite matrix, 
and used the upper triangular matrix calculation instead of 
the lower triangular matrix calculation to obtain the 
transposed result matrix LT to avoid discontinuous access to 
the memory. Then, we build a direct memory access (DMA) 
double-buffered transmitting model, and hide the latency 
between computation and data movement in the calculation 
process. Besides, we use the vector shuffling unit to realise 
the effect of broadcasting a single value as a vector. We also 
use generalised optimisation methods such as loop unrolling 
and software pipelining to exploit the instruction-level 
parallelism of the algorithm fully. We evaluate our 
optimised algorithm of Cholesky decomposition based  
on vector SIMD-DSP, and demonstrate the significant 
performance improvement for the corresponding serial 
algorithm and the corresponding library functions of the TI. 

2 Basic principles of Cholesky decomposition 
algorithm 

The Cholesky decomposition is defined as for a positive 
definite symmetric matrix A = [aij], there is a unique lower 
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triangular matrix L whose main diagonal elements are 
positive, and L satisfies 

TA LL=  (1) 

where LT is the transpose matrix of L. According to  
equation (1), a positive definite symmetric matrix A can be 
written as (Golub and Loan, 1986) 
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and according to the characteristics of partitioned matrices 
multiplication, we have 

( )11 11

11
T

T T

L cholesky A
S B L
L L C S S

−

=
= ×
× = − ×

 (3) 

For the submatrix C in equations (2) and (3), it can be 
viewed as a new input matrix, and we can continue to 
partition it. This process can be done recursively according 
to equation (3) until that C is smaller than A11 in size. Then, 
the final result matrix will be obtained. It is a partitioning 
solution method, and the calculation process of the 
Cholesky decomposition of the partitioned matrix is shown 
in Figure 1. As seen in Figure 1, the size of new matrix A 
will decrease with decomposition in the Cholesky 
decomposition algorithm. 

Figure 1 Cholesky decomposition flowchart 

Treat the C matrix as a new A 
matrix and continue to block 

until C is less than A

L11

Ajj

CB

L11

Ljj

CB

Ljj=cholesky(Ajj)

S=B*Ljj
-T

L11

Ljj

CS

L11

Ljj

CS

C=C-S*ST

 

In the calculation process, the access of data in the  
on-chip data cache is much faster than that of data in an 
independent memory chip, so we need to transmit the data 
in memory to the on-chip data cache before calculating 
them. However, for the large matrix case, it may not be 
possible to put the entire input matrix into the processor’s 
on-chip cache at the beginning of Cholesky decomposition. 
If the on-chip cache can double-buffering, we can develop 
an optimisation for the data transmitting, which allows the 
transmitting of some data to be parallelised with the 
calculation of other data. This parallel processing can 

continue until A can be placed completely in the on-chip 
data cache. 

3 Implementation and optimisation of Cholesky 
decomposition based on vector SIMD-DSP 

3.1 Generation method of upper triangular matrix 
based on Cholesky decomposition according to 
vector memory access characteristics 

For a vector SIMD processor, its vector length is fixed. 
Thus, if the size of a matrix is inconsistent with the vector 
length during data processing, we will face the data 
misalignment problem when we implement the Cholesky 
decomposition algorithm for the vector SIMD processor. 
During the calculation process, the number of data to 
calculate (i.e., calculation width) being smaller than the 
vector length will occur in the Cholesky decomposition of 
matrix Ajj. It is the so-called short vector problem. The 
handling of the short vector is a considerable part of the 
whole work of the Cholesky decomposition for submatrix, 
and it wastes some computing power of the processor. 
Therefore, we set the Ajj in Figure 1 as a diagonal element to 
implement the Cholesky decomposition algorithm for the 
vector SIMD processor. Then, the formula 

( )jj jjL cholesky A=  (4) 

can be replaced by 

.jj jjl a=  (5) 

In the generation algorithm for the lower triangular matrix 
of Cholesky decomposition, the updating of columns will 
discontinuously access corresponding memory units. The 
efficiency of this discontinuous access is very low, only 
1/15 of the efficiency of continuous access (Cupertino et al., 
2010). It will greatly influence the algorithm’s performance 
when the on-chip cache of a vector SIMD processor can be 
accessed parallelly by the processing elements of SIMD 
unit. Therefore, to map the generation algorithm to a vector 
SIMD processor, it is necessary to convert discontinuous 
memory access to continuous access. 

Considering the symmetric geometric characteristics of 
matrix A, the upper triangular matrix LT can be generated 
according to the same calculation principle to replace the 
lower triangular matrix L. When using L, it is only 
necessary to replace the access of the element L[i, j] of the 
lower triangular matrix with the access of the element  
LT[j, i] of the upper triangular matrix. By this conversion, 
the column updating in the calculation process of generating 
the lower triangular matrix is changed into the row updating 
in generating the upper triangular matrix. Because the data 
in a row are continuously stored in the cache, the algorithm 
can calculate them parallelly. The process of calculating the 
lower triangular matrix and that of calculating the upper 
triangular matrix is shown in Figure 2, where ‘x’ represents 
irrelevant matrix elements. 
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Figure 2 Schematic diagram of generating upper triangular 
matrix and lower triangular matrix 
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In the process of generating the matrix LT, A will be updated 
several times (which is decided by the row number of A). 
As seen in Figure 2, a cycle of updating A can be divided 
into the following steps: 

1 updating the corresponding diagonal element 

2 updating other elements in the row where the diagonal 
elements are located 

3 updating the corresponding submatrix. 

Section 3.2 will introduce specific optimisation methods for 
these three steps. 

3.2 Optimisations for Cholesky decomposition 

3.2.1 Reusing the data of diagonal element 
calculation 

The method for calculating the square root of the diagonal 
elements is: firstly, the vector process element (VPE) loads 
the diagonal element ajj of the first row of the current A. 
Then, we calculate the reciprocal square root 1

jjl−  of ajj, and 

then we use the reciprocal of 1
jjl−  to get the new value of 

diagonal element ljj. In order to ensure the precision of the 
reciprocal square root, the Newton-Rhason iteration formula 
can be used. The iterative formula to calculate the reciprocal 
square root is shown in equation (6), where X[n] is the 
initial reciprocal square root of v, and X[n + 1] is the result 
after iteration. The iterative formula to calculate the 
reciprocal is shown in equation (7), where X[n] is the initial 
reciprocal of v, and X[n + 1] is the result after the iteration. 
For each iterative formula, the precision will be doubled if 
used once. 

( )[ 1] [ ] 1.5 ( / 2) [ ] [ ]X n X n v X n X n+ = − × ×  (6) 

( )[ 1] [ ] 2 [ ]X n X n v X n+ = − ×  (7) 

The intermediate data 1
jjl−  obtained in the above calculation 

process can be preserved in the register for the update of 
other elements in the first row in Section 3.2.2, which 
allows converting the corresponding division into 
multiplication there. 

3.2.2 Vectorisation of updating the rows of matrix 
The shuffling unit is generally equipped in a SIMD 
processor to implement copying data at the register level in 
the vector processing unit. For certain source vectors, by 
configuring a specific shuffling mode, we can obtain a new 
vector from different source vectors. The value of the 
elements in the result vector can be from any element of 
other vectors. In the update process of other elements in the 
row where the diagonal element of the current A is located, 
the 1

jjl−  calculated in Section 3.2.1 is copied to all VPEs for 
subsequent calculations by shuffling. This process is shown 
in Figure 3. 

Figure 3 Broadcast flowchart of a single element in a vector 
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For updating other elements in the row corresponding to the 
diagonal element, other elements except for the diagonal 
element in this row will be loaded into vectors and 
multiplied by 1.jjl−  This calculation process is shown in 
Figure 4, where dst = src1 ∗ src2, and dst, src1 and src2 are 
vectors which can be processed in SIMD unit. Moreover, 
further data-level parallelism can be exploited through loop 
optimisation methods such as loop unrolling and software 
pipelining. 

Figure 4 The updating flowchart of the row corresponding to a 
diagonal element 
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3.2.3 Vectorisation of updating submatrix 
The updating of the submatrix corresponding to a diagonal 
element can be divided into a series of sub-processes, each 
of which updates a row of the matrix. Assuming that the 
first row of the current A is a part of the row j of the whole 
matrix, and the row of the currently updated submatrix is a 
part of row i of the whole matrix, the updating process of a 
row of the submatrix is shown in Figure 5. 
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Figure 5 Process of updating submatrix 
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The update of a row in the submatrix in Figure 5 can be 
described as the following steps: 

1 Taking out the aji element and expanding it with the 
shuffling method in Figure 3 to obtain src2. 

2 Taking out all the elements of the jth row in turn to 
obtain src1. 

3 Taking out all the elements of row i in turn to get src3. 

4 Calculating the result values by formula dst = src3  
– src2 ∗ src1, and then writing dst into its 
corresponding position in the matrix. 

3.2.4 Parallel optimisation of DMA transmission and 
computation for large matrix 

DMA provides a high-speed data transfer path, enabling 
access to specific memory resources according to pre-
configured parameters. For the Cholesky decomposition of 
large matrices, if the on-chip cache of the processor cannot 
accommodate the entire input matrix, the decomposition 
process must exchange data between the cache and the off-
chip memory multiple times. Assuming that the on-chip 
cache has a ‘ping-pong’ storage function, a DMA  
double-buffered transmitting model can be constructed to 
realise the parallelisation of the two processes of calculation 
and DMA transmitting, reducing the special time overhead 
of data movement in the calculation process. The DMA 
double-buffered transmitting model is as follows: the  
on-chip cache is divided into two parts, such as buffer0 and 
buffer1; for each part, the space is used to store the first row 
of the current A and a part of the corresponding submatrix 
C. The steps of the whole calculation process are as follows: 

1 Transmit the first row of the current A into the 
corresponding areas in buffer0 and buffer1 by DMA. 

2 Computes the diagonal elements stored in buffer0 and 
buffer1. 

3 Update elements in the first row of the current A, 
except the diagonal element. 

4 Transmit the content of the corresponding submatrix C 
part by part into the buffer0 or the buffer1 in turn for 
calculation. 

5 Consider the matrix C as a new matrix A, and judge 
whether A can be put into the on-chip cache. If not, skip 
to Step 1. Otherwise, continue to execute the next step. 

6 Transmit all the data of A to the on-chip cache for 
calculation. 

The parallel processing principle of DMA transmission  
and calculation for updating the submatrix is shown in 
Figure 6. 

Figure 6 Matrix update calculation and DMA parallel graph 
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4 Experimental result analysis 
This section describes the performance improvement of the 
Cholesky decomposition optimisation algorithm over the 
standard Cholesky decomposition serial algorithm on the 
FT-M7002 processor. Besides, to reflect the performance  
of the optimised Cholesky decomposition algorithm  
for the FT-M7002 processor, the library function 
DSPF_sp_cholesky algorithm of TI’s TMS320C6678 
processor was introduced as a comparison. 

4.1 Experimental environment 

4.1.1 FT-M7002 processor 
FT-M7002 is a 40 nm high-performance DSP processor 
independently developed by the National University of 
Defense Technology. It integrates 1 RISC CPU core and  
2 FT-MT2 DSP cores on the chip, and the entire processor 
uses a three-level storage structure. A single DSP core has 
32 kb scalar storage space scalar memory (SM) and 512 kb 
vector storage space vector memory (VM). When running  
at 1 GHZ, the peak double-precision floating-point 
performance is up to 100 GFLOPS, and the peak  
single-precision floating-point performance is up to  
200 GFLOPS (Wang et al., 2021). 

The DSP core of the FT-M7002 processor is based on 
the VLIW structure, including a scalar processor unit SPU 
(scalar process unit) and a vector processing unit VPU 
(vector process unit). These two processing units are tightly 
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coupled (Chen et al., 2021). The instruction dispatching 
component can provide instructions for SPU and VPU 
simultaneously. The SPU mainly performs serial instruction 
execution and flow control of the entire program. The VPU 
consists of 16 vector computing engines (VPE), which 
support up to 16 channels of 32 bit data. The VPU performs 
vector operations and provides parallel processing mainly 
for intensive calculations. The DMA can do fast data 
exchange between out-of-core DDR and SM or VM. When 
the memory access operations do not conflict, the VM can 
support two vectors read/writes simultaneously and  
two DMA read/writes requests. DMA transmitting and VM 
access can be implemented in parallel through reasonable 
data arrangement. 

4.1.2 TMS320C6678 processor 
TMS320C6678 is an eight-core processor released by TI  
in November 2010. Each core has both fixed-point and 
floating-point computing capabilities. It has 32 KB level 1 
data (L1D) SRAM, 32 KB level 1 program (L1P) SRAM, 
and 512 KB local level 2 (LL2) SRAM. At the core 
frequency of 1.25 GHz, the fixed-point computing 
capability of a single core can reach 40 GMAC/s, and the 
floating-point computing capability of a single core can 
reach 20 GFLOPS/s (Zhou et al., 2014). It has been widely 
used in sonar, radar, communications, and other fields that 
require high fixed-floating-point computing capability and 
real-time performance. 

TI has efficiently implemented library functions for its 
DSP series chips, including general and some special fields. 
TI has done a lot of algorithm optimisation according to its 
algorithm characteristics and chip structure characteristics 
and maximises the execution efficiency of library functions 
through the manual assembly. DSPF_sp_cholesky is a 
function in TI’s DSP library. Therefore, the execution 
efficiency of DSPF_sp_cholesky represents the highest 
execution efficiency of the Cholesky decomposition 
algorithm on this kind of DSP processor. It is more 
convincing to compare the performance of the optimisation 
algorithm in this paper with it. 

4.1.3 Testing method 
For the Cholesky decomposition optimisation algorithm and 
the Cholesky decomposition serial algorithm implemented 
on the FT-M7002 processor, the parallelism of code is 
ensured by assembly encoding. To get the execution cycle 
for the algorithm, related timing functions for the on-chip 
timer function are called. The performance of the 
TMS320C6678 processor is measured by calling the 
corresponding library function DSPF_sp_cholesky in the 
CCS5.5.0 simulator, and the execution cycle number of this 
library function is measured by calling the timing function. 
The parameters of the experimental platform are shown in 
Table 1. 

 

Table 1 Experimental platform parameters 

Platform FT-M7002 TMS320C6678 

Frequency / GHz 1.0 1.25 
LID / KB 32 32 
AM / KB 512 - 
Software platform FT-M7002 IDE CCS5.5.0 

4.2 Performance analysis 
For the small matrix case, the whole matrix can be 
transmitted into the vector buffer VM at one time in the  
FT-M7002 processor, and there is no need for DMA 
transmission and parallel computing processing during the 
processing. In this paper, the Cholesky decomposition is 
analysed experimentally for small matrices of order 128, 
order 160, order 192, order 228 and order 256. For these 
small matrix sizes, the corresponding cycle numbers 
obtained from the tests are shown in Table 2. 

Table 2 Cycle number of the Cholesky decomposition 
algorithm in the mall matrix case 

Matrix 
size 

Serial 
algorithm 

Optimised 
algorithm 

TI library 
functions 

128 3,621,520 977,296 1,358,861 
160 6,807,840 1,595,968 2,304,982 
192 11,463,920 2,400,688 4,274,809 
224 17,855,808 3,403,616 6,759,964 
256 26,316,144 4,659,808 9,989,944 

Table 2 shows the acceleration ratios of the optimised 
Cholesky decomposition algorithm relative to the TI library 
function and the basic serial algorithm shown in Figure 7. It 
can be seen from Figure 7 that, as the matrix size increases, 
the speedup ratio of the optimised Cholesky decomposition 
algorithm relative to the serial algorithm and that to the TI 
library function increases steadily. In the above five groups 
of small-scale matrices, the speedup ratio of the 
optimisation algorithm relative to the basic serial algorithm 
is 3.8~5.64, and the speedup ratio of the optimisation 
algorithm relative to the TI library function is 1.39~2.14. It 
shows that the speedup effect by using the optimised 
Cholesky decomposition algorithm of this paper is obvious. 

For the large matrix case, Figure 8 shows the 
acceleration ratio of Cholesky decomposition optimisation 
algorithm relative to the corresponding serial algorithm 
under the matrix sizes of 512th order, 768th order, 1,024th 
order, 1,280th order and 1,536th order. 

As seen from Figure 8, as the size of the matrix 
increases, the advantage of the Cholesky decomposition 
algorithm that combines the optimisation of vector parallel 
computing and the optimisation of DMA double-buffered 
transmitting becomes greater. For the five input matrix sizes 
shown in Figure 8, a speedup of 7.8 to 14.1 times is 
achieved. 
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Figure 7 Acceleration ratio of Cholesky decomposition in the 
small matrix case 
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Figure 8 Acceleration ratio of Cholesky decomposition 
optimisation algorithm to serial algorithm in the large 
matrix case 
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For the accuracy of the decomposition result, we  
note that corresponding calculating instructions of 
architecture mainly decide this, and we just focus on the 
instruction-level parallelisation of the algorithm. For the 
FT-M7002 processor, we take the case that the input matrix 
order is 128 as an example. The average relative error 
between TMS320C6678 and FT-M7002 is 4.6749 × 10–5. It 
demonstrates that our method is also effective and correct. 

This section uses small-scale and large-scale matrices  
to demonstrate the effect of the optimised Cholesky 
decomposition algorithm on the FT-M7002 processor.  
The corresponding TI library function is introduced for 
comparative analysis. The experimental results show that 
the algorithm proposed in this paper has better performance. 
The performance improvement reasons are mainly as 
follows: firstly, we utilised the vector processing unit to 
calculate the data in parallel. This unit in the FT-M7002 
processor has 16 VPEs. Besides, optimisation methods such 
as loop unrolling and software pipelining are used in our 
code. Secondly, we utilised the symmetry of the input 
positive definite matrix, and used the upper triangular 
matrix calculation instead of the lower triangular matrix 
calculation to obtain the result matrix LT. It allows  
the algorithm to avoid discontinuous access to the  
memory. Thirdly, taking advantage of the double-buffered 
mechanism of the VM cache in the FT-M7002 processor, 
we realised the parallel processing of the two processes of 
calculation and data transmitting. In a word, the  
optimised method in this paper can take advantage of the 

architecture characteristics of vector DSP and brings good 
instruction-level parallelism to the algorithm. 

5 Conclusions 
Considering the hardware characteristics of  
high-performance SIMD-DSP processors, this paper 
proposed an optimisation algorithm of the Cholesky 
decomposition. According to the structural characteristics of 
the result matrix of Cholesky decomposition, the LT matrix 
is generated, and the column update in the calculation 
process of generating the lower triangular matrix is replaced 
by the row update in the calculation process of generating 
the upper triangular matrix, which avoids the discontinuous 
access to the memory. While updating the matrix, the vector 
shuffling unit is used to realise the effect of broadcasting a 
single value as a vector. In this algorithm, the optimisation 
methods such as loop unrolling and software pipelining can 
also be used to develop better instruction-level parallelism. 
The experimental results on the FT-M7002 processor show 
that the optimised algorithm has a speedup ratio of 3.8~5.64 
compared to the corresponding serial algorithm and a 
speedup ratio of 1.39~2.14 compared to the corresponding 
TI library functions. These results show that this paper’s 
Cholesky decomposition optimisation algorithm is effective 
on SIMD-DSP processors. Though the optimisation 
algorithm of Cholesky decomposition in this paper is for the 
single-core case of vector DSP, it is helpful further to 
research the corresponding optimisation algorithm for 
multi-core situations. 
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