A generalised incomplete no-equilibria transformation method to construct a hidden multi-scroll system with no-equilibrium
by Lihong Tang; Zongmei He; Yanli Yao; Ce Yang
International Journal of Computational Science and Engineering (IJCSE), Vol. 27, No. 1, 2024

Abstract: At present, there is a lot of research on multi-scroll chaotic systems with equilibrium points. However, there are few studies on no-equilibrium multi-scroll chaotic systems. This paper proposes a generalised incomplete no-equilibrium transformation method to design no-equilibrium multi-scroll chaotic systems. Firstly, a no-equilibrium chaotic system is constructed by adopting the proposed method. Phase plots and Lyapunov exponents show that the constructed no-equilibrium chaotic system can generate hidden hyperchaotic attractors. Then, a no-equilibrium multi-scroll hyperchaotic system is realised by introducing multi-level logic pulse signals. Theoretical analysis and numerical simulation show that the designed no-equilibrium multi-scroll hyperchaotic system can generate hidden multidirectional multi-double-scroll attractors including 1D, 2D, and 3D hidden multi-scroll hyperchaotic attractors. Finally, an analogue circuit of the no-equilibrium multi-scroll hyperchaotic system is implemented by using commercial electronic elements. Various typical hidden multi-scroll attractors are verified on MULTISIM platform.

Online publication date: Thu, 25-Jan-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com