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Abstract: This paper addresses the issue of forecasting power demands via deep learning (DL)
techniques in smart grid (SG). Assessing proper DL models for power demand forecasting
requires the consideration of factors (e.g., data pre-processing, computational resource usage, the
complexity of learning models). We employ a two-tiered approach to carry out both short-term
and long-term forecasting. Short-term forecasting emphasises model accuracy, while long-term
forecasting assesses model robustness. Our evaluations utilise temporal fusion transformers
(TFT) and the neural hierarchical interpolation for time series (N-HiTS)-based predictors,
tested on a publicly available dataset. Our findings confirm that while TFT and N-HiTS
perform similarly in short-term forecasting tasks, TFT displays superior robustness and accuracy
in long-term forecasting tasks. The TFT model requires substantial computational resources,
especially video RAM (VRAM), for a longer input data stream. Conversely, N-HiTS, though
less confident in long-term forecasting, is shown to be more resource-efficient for handling
longer input data streams.
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1 Introduction

The internet of things (IoT) technologies, as information
communication infrastructure enablers, have enabled
various smart systems in various application domains such
as energy, cities, transportation, manufacturing, healthcare,
and others, leading to effective operations and managements
(Shafique et al., 2020; Xu et al., 2017, 2018; Wang
et al., 2022; Chen et al., 2010; Liu et al., 2019; Liang
et al., 2019b; Gao et al., 2017). In the energy domain, a
smart grid (SG) is an electrical power grid empowered
by the IoT that provides the process, management, and
analysis of both the energy and information resources
in the systems (Al-Turjman and Abujubbeh, 2019). The
examples of components in an SG system include advanced
metering infrastructure, renewable energy integration, and
demand-supply balancing via dynamic pricing, among
others, providing cost-effective two-way energy services to
end users (Liu et al., 2012; Xu et al., 2017; Gao et al.,
2012; Ghasempour, 2019; Colak et al., 2020; Yu et al.,
2015; Moulema et al., 2015).

With data collected via sensing and communication
infrastructures, predicting power usage in both the
short-term and long-term is critical to enable the SG
system’s effective monitoring and control capability. Deep
learning (DL) techniques are considered as viable data
analytics tools to realise effective classification, prediction,
and decision maker in different problem domains (Hatcher
and Yu, 2018; Liang et al., 2020; Mohammadi et al., 2018;
Liang et al., 2019a; Wang et al., 2021; Xu et al., 2020; Chen
et al., 2021). Long short-term memory (LSTM) is a typical
recurrent neural network model to handle time-series data
streams, which provides accurate power usage prediction
(Li et al., 2020; Alazab et al., 2020; Sun et al., 2021).
LSTM utilises the gate mechanism in an unique structure.
Each input data point for the current gate contributes to the
input of the next gate, thus creating a chain of input data
points. Such a design helps the model to capture insightful
patterns in time-streaming data.

Although LSTM effectively handles time-streaming
data, it requires more memory when the length of the input
data stream increases. There are two reasons behind this.
First, the gate mechanism creates a longer chain of gates
with more input data points, and the later gate contains all
previous input data points and previous output, consuming
more memory. Second, when updating the model’s loss
function, LSTM learning rate and performance is usually
improved by batch normalisation (Ioffe and Szegedy, 2015),
which globally computes the mean and standard values over
a subset of all samples. If some data samples have more
quality meta-data features, more memory will be required
to update the loss function.

Unlike LSTM, a new model called transformer (Vaswani
et al., 2017) improves the memory issue by two
mechanisms:

1 Attention mechanism: DL models utilise an attention
mechanism to focus on specific parts of the input data
sequence, resulting in the improved memory of more

extended data sequence and essential details
(Bahdanau et al., 2014).

2 Layer normalisation: When updating the model’s loss
function, transformer uses layer normalisation to
compute mean and standard values for all sample
features locally, which saves a lot of computing
resources and time (Ba et al., 2016).

Transformer enables the parallel data input and dynamic
weight adjusting, which leads to more accurate and efficient
prediction than LSTM in the forecasting of SG (Habbak
et al., 2023; Sun et al., 2022).

Nonetheless, attention mechanism and fully connected
layers become more computationally intensive as the
forecasting horizon length increases due to their quadratic
scaling in memory and computational cost. This issue is
particularly pronounced with long-horizon forecasting tasks,
meaning the longer length of data streams. To deal with
such an issue, a different structure called fully connected
neural network blocks, a type of multilayer perceptron
(MLP) (Gardner and Dorling, 1998), is considered. Such
a method can achieve relatively good performance in
forecasting for the SG and improve scalability without
using a gate or attention mechanism and consume less
computing resources (Wan et al., 2015; Zheng et al., 2017).

In this paper, we assess the performance of two
state-of-the-art DL models for predicting power demand in
the SG system. One representative model is the temporal
fusion transformers (TFT) (Nazir et al., 2023) that employs
transformer approach. The other representative model is the
neural hierarchical interpolation for time series (N-HiTS)
(Challu et al., 2022) that utilises MLP.

Our study has made the following two contributions.

1 We define the power demand prediction problem from
the perspective of DL regarding data pre-processing,
computing resource usage, and the complexity of DL
models. We then determine an evaluation scenario for
forecasting from short-term and long-term prediction
aspects. Short-term prediction is about examining the
accuracy of DL models; Long-term prediction is about
testing the robustness of DL models.

2 We conduct extensive experiments, considering the
training of two predictors based on TFT and N-HiTS
for the downstream task concerning power demand
forecasting with a publicly available SG dataset. In
our experiments, TFT and N-HiTS achieve similar
prediction performances concerning short-term
prediction. However, TFT outperforms N-HiTS in
long-term prediction tasks, but TFT has a bottleneck
of computing resources (i.e., TFT requires larger
video RAM (VRAM) when more extended input
streaming data is given). Meanwhile, N-HiTS can
provide a less reliable forecasting result in long-term
forecasting tasks, but it can consume significantly
fewer computing resources than TFT for longer input
data streams. By examining various input data stream
lengths and forecasting scenarios, we examine some
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of the tradeoffs that analysts must consider when
choosing which model to use.

The remainder of this paper is organised as follows. In
Section 2, we briefly introduce the background of the SG,
TFT, and N-HiTS. We review the related research efforts
in Section 3. In Section 4, we present the workflow of
applying DL for forecasting power demand in the SG,
define the forecasting problem from the perspective of
DL, and explain the dataset and forecasting evaluation
scenarios. In Section 5, we conduct experiments to evaluate
the efficacy of the investigated DL techniques. Finally, we
conclude the paper in Section 6.

2 Preliminaries

This section discusses the challenges related to the SG,
followed by a brief introduction to N-HiTS and TFT,
representative DL techniques.

2.1 Smart grid

An SG system is an electricity transmission and distribution
system that leverages advanced information processing
and communication technologies to enable the monitoring
and control of the SG (e.g., component operating status
monitoring and control, predicting the power usage demand
to end users to balance demand and supply for making
efficient power use). The SG system leverages sensors
(such as smart meters) to monitor the power demand and
adjust the power supply. However, long-term, large-scale
variations in demand, and the uncertainties in these
variations, will require significant adjustments in power
generation, so demand forecasting is vital to SG operations.
The uncertainties of the SG can be caused by the
power demand affected by different environmental factors,
including weather, time of the day, and unexpected natural
disasters, among others. How to perform accurate and
cost-effective forecasting remains an unsolved issue (Quan
et al., 2019). This is because the SG, as a large distributed
system, consists of complex grid topology/structure and
sensors and actuators deployed in different locations. The
massive amounts of data generated in the SG need to be
processed with strict performance requirements depending
on applications in the SG. As the SG system is complicated,
performing accurate demand response, voltage control,
and power flow management is critical and challenging
(Mahmood et al., 2018). It is also essential to design
cost-effective data analytics techniques to process data
efficiently and quickly extract insightful information that
can be used in the grid operations (Karimipour et al., 2019).

2.2 Temporal fusion transformer

It is a typical transformer model designed explicitly for
interpretable time-series data processing such as prediction.
TFT combines the strengths of LSTM and transformer

with the interpretability of traditional statistical models.
It effectively understands temporal dynamics and complex
nonlinear relations in the data, making it highly efficient
for forecasting tasks across diverse time-series data streams
in various applications. There are two critical components
in TFT. One is LSTM, a recurrent neural network
model variant designed to handle long-term dependencies
in time-series data stream (Hochreiter and Schmidhuber,
1997). Its unique architecture uses gate mechanisms to
effectively capture data patterns and prevent issues such
as the vanishing gradient, making it helpful in learning
information from time-series data streams. The other
is transformer backbone (Vaswani et al., 2017). Unlike
traditional recurrent neural networks, TFT relies solely
on self-attention, allowing it to process data in parallel
and capture dependencies in the input data regardless
of distance between elements of the input vector. This
architecture makes it exceptionally effective for tasks in
natural language processing, such as translation and text
generation.

2.3 Neural hierarchical interpolation for time series

N-HiTS (Challu et al., 2022) is a DL model based on MLP
(Taud and Mas, 2018) that utilises a hierarchical approach
to interpolate and predict time-series data streams. It learns
to decompose the time-series data into components at
different scales, each processed by an interpolation function.
It effectively understands the complex patterns and trends
in the data streams and performs accurate and efficient
predictions on time-series data. This design facilitates the
capture of complex patterns and trends in time-series
data streams. Note that while transformer models rely on
attention mechanisms to understand the dependencies in
the input data, irrespective of their positional distance,
N-HiTS uses a hierarchical structure to process different
components of time-series data. Depending on the specific
implementation, N-HiTS could be more computationally
efficient than transformer models, especially when dealing
with very long sequences, due to its hierarchical nature.

3 Related work

This section reviews research efforts closely relevant to our
study.

3.1 Demand and supply in SG

How to effectively balance demand and supply is a
critical issue that needs to be resolved in the SG.
Various techniques have been leveraged to ensure resource
allocation to support efficient demand and supply. For
example, Kong (2020) leveraged device-to-device (D2D)
communication to connect SG facilities and investigated
an optimisation problem to allocate radio resources so that
real-time pricing (RTP) can be supported. Kement et al.
(2021) proposed a privacy-aware demand response (DR)
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scheme to minimise the peak demand and variation in the
power supply. Likewise, Belhaiza et al. (2020) proposed a
game theoretical model to maintain the viability of the SG
infrastructure and discussed the order relationship between
the user and provider utility.

3.2 Learning in SG

DL has been proposed to improve SG’s efficiency
in predicting, monitoring, and control capabilities. For
example, Hossain et al. (2019) explored applying big
data and machine learning in the SG. They discovered
that big data could improve the accuracy of analysis of
power marking by leveraging DL models with SG to
obtain more precise predictions for electricity demand. Puhe
and Rehtanz (2022) proposed an ML-based mechanism
to quickly identify the corrupted sub-grid to disconnect
from the grid system. Likewise, Gómez and García (2021)
leveraged the transformer to predict the power usage on SG.

4 Our approach

This section covers the workflow of SG forecasting from
a DL perspective, explains the dataset used for the
experiments, and introduces our designed scenarios.

4.1 Workflow

Figure 1 illustrates the three steps of applying DL in
forecasting in the SG:

1 Data collection and refinement: The SG system can
regularly gather usage and state information via a
variety of sensors connected through the smart grid
communication networks and store it in its data centre
deployed in edge or cloud server, which then refines
the data using various mechanisms, such as removing
unnecessary data, filling in any missing data, and
normalising the data, among others.

2 Feature extraction and training: The DL model
begins with the training process on those refined data
for forecasting tasks. We use an attention
mechanism-based learning model as an example in
Figure 1. After multi-tuning turns, we obtain a
well-trained learning model.

3 Forecasting demand: The trained learning model is
ready to predict power demand based on the incoming
historical power usage data stream and give
forecasting as an output.

After illustrating DL for demand prediction in the SG,
we now define the forecasting performance of DL in the
following aspects:

1 Data pre-processing: DL performance is greatly
affected by the number of input variables, also known

as features. If there are more input variables, it can
positively impact the effectiveness of DL. However,
too many features can result in over-fitting, while too
few can lead to under-fitting.

2 Complexity of the DL model: The term ‘complexity’
refers to a model’s ability to learn the
information/knowledge from data, which can be
affected by the model’s architecture and the amount
of data it is trained on. A model with more layers or
neurons (known as a larger model size) may have a
greater capacity to learn complex features and,
therefore, be considered more complex. However,
other factors, such as the depth of the model (how
many layers it has), the type of layers utilised (such
as convolutional or recurrent layers), and the
activation functions used, can affect the complexity of
the model as well.

3 Computing resource usage: The performance of DL is
affected by the computing resources available.
Complex models require more power and memory,
leading to longer training times and higher costs.
When resources are limited, model complexity can be
restricted, resulting in instability or hindered training.
Using resources efficiently is essential for ensuring
the robustness of the DL model.

Figure 1 DL-based demand prediction in SG
(see online version for colours)

Table 1 Average daily energy usage for three targets for a
month

consumer_id average_daily_power_usage (Kw)

Residential 26.677
School 121.015
Factory 251.135
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Table 2 Table header for the dataset

hourly_power_usage hours_from_start days_from_start date consumer_id hour day day_of_week month year

Figure 2 Example power usage (see online version for colours)

4.2 Data collection

As the supplementary dataset, we use a realistic power grid
energy usage dataset (UCI Machine Learning Repository,
2015), which contains different levels of daily usage of
370 metres for four years. We choose three of those meters
with significant margin usage levels. We obtain the daily
mean power usage value from a month’s captured data in
Table 1. Then, we choose the lowest value to represent
the power usage for the residential, the secondarily lowest
value to represent the power usage for the school, and the
highest value to represent the power usage for the factory.
Figure 2 illustrates a month’s power usage for residential,
school, and factory, respectively. We can infer that the
curves represent the weekly periodic data, and the grey
bar highlights the maximum power usage each week. The
output will be in three fields: timestamps, consumer_id,
and hourly_power_usage. We present how to prepossess the
data properly in Subsection 5.1.

4.3 Scenarios

Two factors affect the performance of the forecast with time
series data as input:

1 Look-back window size: It refers to the number of
previous data points considered when making
forecasts in a time-series data stream.

2 Prediction window size: It refers to the number of
future data points predicted by the model in the
time-series data.

We design two scenarios for forecasting performance
evaluation based on those two factors:

1 Short-term task: Our main objective is to assess the
accuracy of DL models in making predictions. To

achieve this, we conduct experiments using look-back
window sizes of 1 day, 3 days, 7 days, and 28 days.
We also define prediction window sizes of 1 day, 3
days, 7 days, and 28 days. To determine the impact of
various combinations, we cross-combine the look-back
windows and prediction window sizes and evaluate
their effect on the accuracy of DL models.

2 Long-term task: Such a task tends to test the
robustness of our DL models. For this, we use longer
look-back window sizes of 1 month, 2 months, and
3 months. We also expand the prediction window
sizes to 1 month, 2 months, and 3 months. We choose
the same length for each pair of look-back and
prediction window sizes to keep things consistent and
ensure a fair comparison. We aim to see how well our
models perform when making predictions over an
extended period and whether they can maintain their
performance stability in these conditions.

5 Performance evaluation

We conduct a comprehensive performance evaluation to
validate the efficacy of two investigated DL models. In the
following, we first describe our evaluation methodology and
then present the results.

5.1 Methodology

5.1.1 Environments

We leverage the Pytorch (Paszke et al., 2019) as the
platform for conducting experiments1. Our experiment uses
a server with an Intel I9-9980XE CPU and an advanced
NVIDIA RTX 4090 GPU. This configuration lets us easily
handle the extensive computational requirements for power
demand prediction tasks.

5.1.2 Data preprocessing

Based on the dataset discussed in Subsection 4.2, we
decompose the feature timestamp into following eight
features: hours_from_start, days_from_start, date, hour,
day, day_of_week, month, and year. Combining this with
the feature consumer_id and hourly_power_usage, we
create a new table header for the dataset, such as the ones
in Table 2.

5.1.3 Learning model settings

We use TFT and N-HiTS as the key DL models
to evaluate forecasting performance with the following
hyperparameters:
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1 TFT: The hidden size is set to 16, attention head size
to 4, dropout to 0.1, and hidden continuous size to
160. The model is trained with 3 million parameters.

2 N-HiTS: The hidden size is set to 64, the optimizer is
Adamw (Loshchilov and Hutter, 2017), and the loss
function uses MQF2DistributionLoss (Kan et al.,
2022). The model is trained with 91 thousand
parameters.

We utilise the default configuration for the hyperparameters.
After assessing the results of our evaluation, we have
found that the default setting is effective for obtaining good
prediction results. Note that hyperparameter tuning could
enhance the model’s performance, which is not the main
focus of our paper.

Figure 3 Suggested initial training learning rate
(see online version for colours)

We consider two mechanisms to optimise the training
process:

1 Mechanism of finding the initial learning rate: Based
on our pre-configured learning setting, we leverage
one built-in method in Pytorch called lr_find. This
method provides a plot of loss and learning rate as
shown in Figure 3. We can infer from the figure that
the red dot represents our initial suggested learning
rate. At this stage, the red dot is not at its lowest
position. In this case, the method will find a point
decreasing relatively quickly but not too close to the
minimum loss value to prevent potential divergence.

2 Early stopping mechanism: With that suggested initial
learning rate, we set max_epoch to 50. However, to
accelerate the training part and prevent overfitting, we
use a method called EarlyStopping in Pytorch within
50 epochs. It monitors the validation loss during the
training process and stops the training when the
metric stops improving or decelerating.

5.1.4 Performance metrics

We evaluate the performance of 16 scenarios properly from
two perspectives: training and prediction. Three metrics are
considered concerning training performance:

1 Average p50 loss overall: It represents the median
loss during a model’s training and offers a robust
performance measure less influenced by extreme
values. In this case, the average performance for the
three targets is measured together.

2 Average p50 loss per target: Similarly to the first
metric, it focuses on the model’s performance for
forecasting each target.

Concerning prediction performance, we consider the
following metrics:

1 Mean absolute error (MAE): It is determined by
averaging absolute differences between predicted and
actual values, indicating the average magnitude of
errors. It can be mathematically expressed as
equation (1).

2 Mean squared error (MSE): It is determined as
averaging squared differences between predicted and
actual values, emphasising more significant errors. It
can be mathematically expressed as equation (2).

3 Root mean square error (RMSE): It is determined by
the standard deviation of the residuals and maintains
the same unit as the target variable. It can be
mathematically expressed as Equation (3).

4 Attention curve for TFT: A higher value in the
attention curve at a particular time step or input
feature indicates that the model assigns more
importance to that specific element when generating
its output.

MAE =
1

n

n∑
i=1

|yi − ŷi|, (1)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (2)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (3)

where yi is the actual value for the ith data point, ŷi
is the predicted value for the ith data point, and n is
the total number of data points in the dataset.

5.2 Results

5.2.1 Short-term prediction results

From Table 4 provided, we can analyse the training
performance of the two models, TFT and N-HiTS, based on
the look-back windows size (decode length) and prediction
window size (prediction length) under consideration.
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Table 3 Short-term prediction results for school

Target Encode length Prediction length TFT N-HiTS
MAE MSE RMSE MAE MSE RMSE

School 1 day 1 day 5.9811 54.2079 7.3626 7.9916 116.429 10.7902
3 days 2.924 15.3616 3.9194 11.0376 230.6841 15.1883
7 days 2.5195 10.3885 3.2231 9.8245 182.4015 13.5056
28 days 2.9291 15.7269 3.9657 15.3985 361.6085 19.016

3 days 1 day 6.5094 61.3548 7.8329 9.8244 175.9917 13.2662
3 days 5.4697 56.946 7.5463 10.7296 201.6049 14.1988
7 days 2.2257 8.7965 2.9659 9.6917 170.3688 13.0525
28 days 2.712 13.1448 3.6256 12.5986 251.5438 15.8601

7 days 1 day 5.2043 43.9184 6.6271 10.8056 209.5272 14.4751
3 days 2.0612 6.6473 2.5782 12.1327 269.1699 16.4064
7 days 4.5894 39.1154 6.2542 9.5265 171.9215 13.1119
28 days 2.8437 12.5256 3.5391 12.68 236.7377 15.3863

28 days 1 day 8.8667 128.9882 11.3573 11.8812 257.3566 16.0423
3 days 2.7792 15.0648 3.8813 11.1723 235.5087 15.3463
7 days 3.9578 28.3005 5.3198 10.5625 185.6453 13.6252
28 days 3.4032 19.9166 4.4628 14.5143 329.6602 18.1565

Table 4 Training results of short-term prediction

Encode
length

Prediction
length

TFT N-HiTS
Average p50
loss overall

Average p50 loss per target Average p50
loss overall

Average p50 loss per target
Residential School Factory Residential School Factory

1 day 1 day 11.7155 1.1226 13.0794 20.9446 24.1557 1.5506 25.1503 45.7665
3 days 14.8674 1.2503 11.3374 32.0146 25.2294 1.4515 17.8319 56.4049
7 days 16.4171 1.4419 12.6795 35.13 22.5707 1.6094 19.3682 46.7346
28 days 19.4486 1.2796 19.7753 37.291 29.6139 4.2175 32.1862 52.4381

3 days 1 day 23.0556 1.7768 23.6427 43.7474 17.8783 2.0675 13.0082 38.5592
3 days 18.9631 1.0258 15.3672 40.4966 16.4600 1.5966 14.1042 33.6794
7 days 21.1683 1.6787 13.7657 48.0606 21.1955 1.8872 17.3896 44.3098
28 days 18.2232 1.1274 18.3533 35.1891 20.5284 3.069 24.6892 33.8272

7 days 1 day 25.3694 1.5029 25.8703 48.7351 29.4483 1.8165 25.0357 61.4926
3 days 11.0821 0.8285 10.4434 21.9746 21.5173 1.3703 14.8279 48.354
7 days 18.5781 1.7568 12.0121 41.9655 20.7979 1.8076 16.2597 44.3265
28 days 19.9899 1.2155 20.2044 38.5498 22.00443 3.5044 26.1863 36.3226

28 days 1 day 21.1333 1.5389 22.341 39.5202 23.29732132 2.061 19.7893 48.0417
3 days 11.2287 1.2817 10.6206 21.7838 18.6470 1.0663 14.5873 40.2874
7 days 16.7219 1.5628 12.6273 35.9758 21.7468 2.6389 16.9264 45.6751
28 days 18.0060 1.1883 18.3618 34.4679 28.4607 4.0885 32.1196 49.1742

Table 5 Short-term prediction results for residential

Target Encode length Prediction length TFT N-HiTS
MAE MSE RMSE MAE MSE RMSE

Residential 1 day 1 day 0.4542 0.3207 0.5663 1.364 2.5894 1.6092
3 days 0.8284 3.1772 1.7825 2.1735 8.4219 2.9021
7 days 0.6283 1.36 1.1662 1.7954 6.0589 2.4615
28 days 0.9933 7.4346 2.7266 3.0181 14.2709 3.7777

3 days 1 day 0.6172 0.5738 0.7575 1.4483 2.9907 1.7294
3 days 0.8581 3.1912 1.7864 2.1471 9.3952 3.0652
7 days 0.5614 1.0401 1.0198 1.9145 6.6381 2.5764
28 days 0.5684 0.8249 0.9082 2.6773 12.2152 3.495

7 days 1 day 0.5076 0.5319 0.7293 1.4249 3.3856 1.84
3 days 0.755 3.0139 1.7361 1.8461 8.3506 2.8897
7 days 0.7052 1.7644 1.3283 1.9221 6.9912 2.6441
28 days 1.1148 6.2991 2.5098 2.6553 12.2923 3.506

28 days 1 day 0.6823 0.7536 0.8681 1.4772 2.9461 1.7164
3 days 0.7788 2.4812 1.5752 1.8185 7.297 2.7013
7 days 0.7754 1.7267 1.3141 2.3557 10.1551 3.1867
28 days 1.0282 7.9478 2.8192 2.7513 12.947 3.5982
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Table 6 Short-term prediction results for factory

Target Encode length Prediction length TFT N-HiTS
MAE MSE RMSE MAE MSE RMSE

Factory 1 day 1 day 5.7099 54.2079 7.2077 103.1451 11,026.6768 105.008
3 days 4.1273 27.7286 5.2658 112.3263 13,433.9775 115.905
7 days 3.308 18.7053 4.325 124.1845 16,316.0361 127.7342
28 days 3.1776 17.8393 4.2237 119.57 15,164.6279 123.1447

3 days 1 day 13.4518 314.1987 17.7257 102.0523 10,821.5127 104.0265
3 days 4.0661 25.8167 5.081 118.4471 14,863.4307 121.9157
7 days 2.8019 13.507 3.6752 120.2038 15,341.4912 123.8608
28 days 2.6193 11.649 3.4131 126.1388 16,920.2695 130.0779

7 days 1 day 7.6615 95.357 9.7651 106.6045 11,701.9648 108.1756
3 days 3.2024 16.5914 4.0733 116.7852 14,632.6895 120.9657
7 days 4.5527 32.2035 5.6748 119.6854 15,334.167 123.8312
28 days 4.9132 35.5907 5.9658 125.4715 16,673.4551 129.1257

28 days 1 day 11.1951 204.2473 14.2915 102.5485 10,903.1318 104.4181
3 days 3.4863 23.3489 4.8321 118.6385 15,020.1875 122.5569
7 days 6.0435 53.3221 7.3022 118.2622 14,830.7725 121.7817
28 days 3.8893 25.4946 5.0492 121.5253 15,914.4883 126.1526

Figure 4 TFT short-term forecast result for school, (a) forecast
with look-back window size 1 days and prediction
window size 1 day (b) forecast with look-back
window size 7 days and prediction window size
1 day (see online version for colours)

(a)

(b)

For TFT, when the length of the data used to train the
TFT model is increased, the model’s overall average p50
loss tends to increase, indicating a decline in performance.
The same pattern is observed when the prediction length
is increased, with the average p50 loss also tending to
rise, indicating that the model struggles to make accurate
predictions for events further in the future. For N-HiTS
model, we can see that as the length of encoding and
prediction increases, the average p50 loss also increases,
indicating that larger input and output window sizes make
it difficult for the N-HiTS model to maintain prediction
accuracy. In comparison, the TFT model generally performs

better than N-HiTS under similar conditions, as it tends
to have a lower p50 loss. In short, we observe that
both models perform better with shorter encoding lengths
and prediction lengths, with the TFT model generally
outperforming the N-HiTS model during the training stage.

During the prediction stage, we analyse the performance
of both models for three different targets.

5.2.2 Short-term prediction results for school

Table 3 represents the school area forecast results. We
can infer that when the look-back window size is held
constant, the total error decreases as the prediction
window size expands in both models. Such results occur
because the model has better flexibility for error handling
when generating forecasts over a more extended range.
Conversely, when the prediction window size remains
fixed, the total error increases as the look-back window
size grows for both models. Such results occur because
having more data points as background knowledge for
the model results in a reduced allowance for error during
short-range forecasting. In Figure 4, it is evident that when
the prediction window size is kept constant, the forecast
accuracy of TFT improves as the look-back range increases.
Because the attention curve in Figure 4(b) has described a
more approachable and similar trend of observed data points
than the curve in Figure 4(a), the model can understand
input features better with a more extended range look-back
window size and improve prediction. Note that the value
of attention in Figure 4(a) is randomly assigned, causing
the TFT model to misunderstand the significance of specific
time steps. For instance, some low peak demand values
could be given a disproportionately high attention value,
leading to a misjudgement that affects prediction. This
could occur due to a lack of observed knowledge, resulting
in less accurate prediction results. As the TFT model
receives more inputs, the attention curve becomes more
adaptable in discerning each input’s significance, meaning
that peak and lowest demand values are given greater
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attention than other demand values, resulting in more
accurate prediction results. Also note that in all figures for
short-range forecasting, a narrower shaded region will be
displayed when the prediction is more accurate. When the
prediction error increases, the shaded area becomes more
significant and denser. Similar performance is shown for
N-HiTS in Figure 5.

Figure 5 N-HiTS short-term forecast result for school,
(a) forecast with look-back window size 3 days and
prediction window size 7 days (b) forecast with
look-back window size 7 days and prediction
window size 7 days (see online version for colours)

(a)

(b)

5.2.3 Short-term prediction results for residential

In Table 5 for residential forecast, when the look-back
window size is constant, the error metrics tend to increase
as the prediction window size increases for both models.
Such a result suggests that predicting further into the
future becomes more challenging and less accurate. When
the prediction window size is constant, the error metrics
do not follow a consistent pattern as the look-back
window size increases for both models. It suggests that the
relationship between look-back window size and prediction
accuracy is more complex and may not exhibit a clear
trend. In Figure 8, when using a fixed look-back window
size in the TFT model, the forecasting line becomes
less accurate as the prediction window size increases.
It is because the Figure 8(a)’s attention curve more
effectively highlights the significance of high-peak and
low-bottom values in the observed data points, while the
Figure 8(b)’s attention always prioritises low-bottom values
over high-peaks. However, in the observed data from time
index 0, there are more high-peak values than low-bottom
values, which results in the lower configuration delivering

poorer performance than the upper one. Meanwhile, as seen
in Figure 9, N-HiTS shows a similar tendency.

Figure 6 TFT short-term forecast result for factory (a) forecast
with look-back window size 7 days and prediction
window size 1 days (b) forecast with look-back
window size 7 days and prediction window size
3 days (see online version for colours)

(a)

(b)

5.2.4 Short-term prediction results for factory

The factory forecast results displayed in Table 6 show that
as the prediction window size increases for both models,
the overall error decreases when a fixed look-back window
size is used. This is because the model has more room for
error when predicting over an extended period. Nonetheless,
when the prediction length size is fixed, the overall error
increases as the look-back window size increases for both
models. This result is expected as more data points are
reserved for the model to learn from, making it less likely
to make errors when predicting short-range forecasts. As
seen in Figure 6, TFT’s predictions are more accurate
and have a wider range when using fixed look-back
windows. The grey line in both graphs indicates that data
points with higher attention values significantly impact the
forecast. However, as shown in Figure 7, N-HiTS performs
worse as the prediction length increases, despite having the
same encoding and prediction length set-up. Such results
are expected because N-HiTS does not require positional
information of the input sequence and therefore struggles
to understand the relationship between data points, resulting
in an increase in MAE and prediction length. Furthermore,
N-HiTS performs worse with a fixed encode length as the
prediction range increases.
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Table 7 Training result of long-term prediction

Encode
length

Prediction
length

TFT N-HiTS

Average p50
loss overall

Average p50 loss per target Average p50
loss overall

Average p50 loss per target

Residential School Factory Residential School Factory

1 months 1 months 18.0060 1.1883 18.3618 34.4679 28.4607 4.0885 32.1196 49.1742
2 months 2 months 20.0985 1.7388 25.9465 32.6104 34.6232 4.3665 36.0509 63.4524
3 months 3 months * * * * 30.2940 4.2862 32.6064 53.9895

Table 8 Long-term prediction results for school

Target Encode length Prediction length TFT N-HiTS

MAE MSE RMSE MAE MSE RMSE

School 1 months 1 months 3.4032 19.9166 4.4628 14.5143 329.6602 18.1565
2 months 2 months 2.1371 9.2171 3.036 21.2881 628.5302 25.0705
3 months 3 months * * * 21.8978 655.9341 25.6112

Table 9 Long-term prediction results for residential

Target Encode length Prediction length TFT N-HiTS

MAE MSE RMSE MAE MSE RMSE

Residential 1 months 1 months 1.0282 7.9478 2.8192 2.7513 12.947 3.5982
2 months 2 months 0.4244 0.3216 0.5671 4.5402 33.4167 5.7807
3 months 3 months * * * 5.0379 38.243 6.1841

Table 10 Long-term prediction results for factory

Target Encode length Prediction length TFT N-HiTS

MAE MSE RMSE MAE MSE RMSE

Factory 1 months 1 months 3.8893 25.4946 5.0492 121.5253 15,914.4883 126.1526
2 months 2 months 11.348 246.1751 15.69 129.8029 18,497.4883 136.0055
3 months 3 months * * * 133.9979 19,781.3613 140.6462

In summary, for the short-term task, both TFT and N-HiTS
can have relatively good accuracy in the training and
prediction stages. Furthermore, both models perform well
for the sub-targets test, except N-HiTS performs worse than
TFT in factory usage prediction.

5.2.5 Long-term prediction results

During the training stage, as seen in Table 7, we observe
that both TFT and N-HiTS models are trained well with
relatively small average p50 loss overall and average p50
loss per target for each configuration of encoding length
and prediction length. However, for the TFT model, in the
three months configuration test, it cannot finish the test (we
denote with ‘*’ for all fields) due to being out of VRAM (it
ran out of all 24GB memory in RTX 4090). Furthermore,
the N-HiTS can still smoothly finish the test with the same
configuration because TFT uses the attention mechanism.
It limits performance due to the input sequence length; a
longer length will consume more memory. In this three
months prediction, its input length is 30× 3× 24 = 2,160,
which is more than TFT can handle.

During the prediction stage, the results from Tables 8,
9 and 10 indicate that TFT is better than N-HiTS at
forecasting the power demand for the school, residential,

and factory. However, TFT cannot complete the forecasting
and marks all fields as ‘*’ due to being out of VRAM, for
the 3-month test. Despite both models having the lowest
MAE, MSE, and RMSE for residential prediction out of
the three tasks, the residential prediction result in Figure 10
shows that TFT is significantly better than N-HiTS during
the 2-month test. In the sub-figure, the forecasting line of
TFT is more precise and accurate, making predictions more
reliable. Conversely, the forecasting line of N-HiTS almost
becomes a straight line in the upper figure and cannot
predict accurately for most data points.

In summary, TFT performs better when predicting
accuracy for long-term tasks than N-HiTS. However, as
the input length increases, N-HiTS outperforms TFT in
handling the job.

6 Final remarks

In this paper, we have addressed the power demand
prediction issue in the SG system by leveraging
advanced DL techniques. To comprehensively evaluate
different models, we have considered data pre-processing,
computational resources, and the complexity of DL
models. Our evaluation scenario includes both short-term
and long-term forecasting tasks. We have considered
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the accuracy of short-term predictions and assessed
the model’s robustness for long-term forecasts. This
two-tiered approach ensures that the selected model
performs well for immediate and long-term forecasting
tasks. Our experiments have shown that the TFT and
N-HiTS predictors, trained using a publicly available
dataset, demonstrate the practical application of DL models
in power demand forecasting. Both TFT and N-HiTS
perform well in short-term forecasting tasks. However,
TFT outperforms N-HiTS in long-term forecasting tasks,
showcasing its accuracy and robustness in predicting future
power demand over extended periods. However, TFT
requires substantial computational resources, particularly
VRAM, for processing longer input sequences. On the
other hand, N-HiTS, while providing lower confidence in
long-term forecasting than TFT, requires significantly fewer
computational resources for longer input data streams,
making it a more resource-efficient model for such tasks.
In real-world practice, devices in the smart grid could
have limited computing resources and require low-latency
learning decisions. Thus, our designed learning model can
be deployed on an edge server close to devices so that
requirements for training computation and timely learning
decisions can be satisfied.

Figure 7 N-HiTS short-term forecast result for factory,
(a) forecast with look-back window size 7 days and
prediction window size 1 day (b) forecast with
look-back window size 7 days and prediction
window size 3 days (see online version for colours)

(a)

(b)

Figure 8 TFT short-term forecast result for residential,
(a) forecast with look-back window size 7 days and
prediction window size 1 day (b) forecast with
look-back window size 7 days and prediction
window size 3 days (see online version for colours)

(a)

(b)

Figure 9 N-HiTS short-term forecast result for residential,
(a) forecast with look-back window size 7 days and
prediction window size 1 day (b) forecast with
look-back window size 7 days and prediction
window size 3 days (see online version for colours)

(a)

(b)
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Figure 10 Long-term forecast results for residential,
(a) N-HiTS forecast with look-back window size
2 months and prediction window size 2 months
(b) TFT forecast with look-back window size
2 months and prediction window size 2 months
(see online version for colours)

(a)

(b)
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Notes
1 Certain commercial equipment, instruments, or materials are

identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended
to imply that the materials or equipment identified are
necessarily the best available for the purpose.


