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Abstract: The ultrasound (US) image is well known for accessibility and low 
cost. Most importantly it is the only diagnostic technique which is radiation 
free. But, the presence of speckle noise, thoroughly limits its application for 
diagnosis. This paper aims to remove the noise using wavelet transformation. 
The US were transformed using discrete wavelet transform after log 
transformation. A threshold was obtained using the estimated noise variance for 
each sub-band. A multi-scale thresholding function was proposed to increase 
the thresholding flexibility. A large range of US were used (12,400, 926, 780, 
and 1,000 images of foetus, liver, breast and synthetic images respectively) to 
evaluate the performance. When compared with other thresholding techniques 
the proposed method has shown a maximum improvement of 172%, 340%, and 
380% in peak signal to noise ratio, mean square error, and structural similarity 
index. With the referenceless metrics our technique has shown 47% 
improvement in US quality. 

Keywords: denoising; speckle noise; ultrasound images; wavelet 
transformation. 
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1 Introduction 

Before treatment of any In Vivo disease, it is compulsory to analyse its state. It is done 
either by following an invasive or a non-invasive procedure (Arumugham et al., 2019; 
Bini, 2021). It is most reasonable to adopt a non-invasive procedure since it is painless. 
The non-invasive procedure for diagnosis starts with developing an image of the affected 
area. Later, an experienced radiologist evaluates the condition. The imaging technique 
here involves waves of different frequencies, which can successfully invade the skin. The 
most practiced imaging techniques are magnetic resonance images, computed 
tomography, X-rays, mammograms, and ultrasound (US) (Bini and Bhat, 2014; Perumal 
and Thiruvenkadam, 2022; Talbar et al., 2022; Yadav and Ganvir, 2022). The US-based 
imaging has many advantages over others like it is the most economical, least complex 
setup, hand-held transducers, and completely harmless. The only disadvantage of a US 
image is its quality due to the speckle noise (Yu et al., 2012). 

US images suffers from two types of noises one is the additive noise and the other is 
multiplicative noise. Their names represent their mathematical relation with the image 
pixels as given in equation (1). 

( ) +o i m aIm Im P P= ×  (1) 

Here, Imo is the observed US image, Imi is the ideal US image (uncorrupted image), Pm is 
the multiplicative noise and Pa is the additive noise. The zero-mean property of the 
additive noise makes it removal easy. Basic averaging filters can efficiently suppress the 
distortion due to the additive noise. In the averaging filter the pixel intensity is replaced 
by the average intensity of its surrounding pixel and the additive noise due to its zero 
average property is suppressed sufficiently. The multiplicative component also known as 
the speckles, are because of the internal reflection of US waves during imaging process. 
These unwanted reflections are received at the transducer and interpreted as granular 
distortion in the US image. Due to its multiplicative nature its removal is very 
challenging (Priestly Shan et al., 2021). 

The denoising needs to be done efficiently but without losing the fine details (Chen 
and He, 2021). In the image, many methodologies have been proposed to date for 
denoising mean filters, median filters, bilateral filters (Luo et al., 2019), anisotropic 
diffusion (AD) (Chen and He, 2021), and wavelet thresholding (or shrinkage) (Nabil, 
2013). The mean and median filters narrow down many intensity variations in the image. 
The bilateral filter is a nonlinear smoothing filter that has a blurring effect at the image 
edges. The choice of edge-stopping function is a little tricky in anisotropic diffusion, so 
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denoising is ineffective. Wavelet based thresholding technique on the other hand adopts 
multiresolution processing of the image (Nair and Singh, 2022). Images are first divided 
into one approximation and three detail sub-bands using wavelets. The approximation 
sub-band has the most of the important details of the image and negligible presence of 
noise, while the opposite is true for the detail sub-band. In this way the technique is 
significantly able to preserve the image details and successfully remove the noise at the 
same time. 

In the wavelet thresholding framework, the thresholding function that has been used 
to date has limited flexibility. That is, mostly all of the studies to the best of our 
knowledge divide the coefficients into two scales (Andria et al., 2013; Bedi and Sunkaria, 
2022; Elyasi et al., 2016; Randhawa et al., 2019; Vidakovic, 1998). But having the 
coefficients divided into higher scales will result in improved recovery. Moreover, the 
threshold value needs to be improved to divide the coefficients into higher scales. In this 
literature, we have introduced an advanced wavelet decomposition-based speckle 
reduction technique to remove noises in ultrasound images. The speckle noises are 
present in the ultrasound image in the form of multiplicative noise. They are first 
converted into additive noise. Then we introduced a hybrid threshold value for the 
identification of noisy coefficients. And a novel multi-scale functions to restore the noise 
coefficients of the sub-band. To the best of our knowledge, not a single wavelet denoising 
technique has been tested on this variety of US images. Moreover, we designed a large 
set of synthetic images with the resemblance of a breast US image to test the reference-
based performance measures. The results of the proposed technique were compared with 
various best-in-class speckle reduction techniques. 

2 Research background 

Wavelet provides a multi-resolution analysis of an image (Venkatesan and Ragupathy, 
2022). Hence wavelet transformation also enables the multi-resolution analysis of the 
effect of speckle noise. Many studies have observed a strong correlation between the 
variances of the detail sub-band histogram and that of speckle noise variance. So, 
wavelet-based methods provide a more fundamental way of reducing the effects of 
speckle noise. In the most cardinal procedure of the wavelet-based technique the image is 
transformed twice. First transformed with the logarithmic transform and then with the 
wavelet transformation (Jing-Yi et al., 2016). After the logarithmic transform, the nature 
of speckle noise changes to additive from multiplicative. It eases the further processing of 
the image for denoising. In the next step, a median absolute deviation based estimator 
(MadE) is used to estimate the speckle noise variance (Wilcox, 2022) (varn). To date, 
different methods have been introduced to calculate a suitable threshold (th) from the 
estimated variance. Initially a VisuShrink was introduced by D.L. Donoho and  
I.M. Johnstone. It is also known as the universal threshold, and its calculation is in 
equation (2). 

2 log( )univ nth var M N= ×  (2) 

The size of the input image is (M × N). Later it was improved by using Stein’s unbiased 
risk estimator (SE) (Chang et al., 2000). In the improved version, the threshold value was 
chosen as the minimum of thuniv and the value that minimises SE. It was named as 
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SureShrink because of the SE. D.L. Donoho and I.M. Johnstone also introduced 
BayesShrink (Donoho, 1995), which has its threshold value as given in equation (3). 

2
nBayes

l
varth var=  (3) 

After thresholding, a thresholding function is required to improve the noisy coefficient. 
Primarily there are two functions, soft and hard thresholding, in equations (4) and (5), 
respectively. 

0
( )

if c th
f c

c if c th
 <

=  ≥
 (4) 

0
( )

( )(| | )
if c th

f c
sign c c th if c th
 <

=  − ≥
 (5) 

The hard threshold produces larger discontinuities in the histogram. The soft thresholding 
is better than the hard thresholding in terms of discontinuities, but it also creates spikes in 
the histogram. These discontinuities and spikes result in poor recovery from speckle 
noise. Andria et al. (2013) used an exponential operator for coefficient transformation. As 
given in equation (6), the function was way more flexible than soft and hard thresholding 
in coefficient transform. 

(| | ).
( )

k c thc e if c th
f c

c if c th

− <
=  ≥

 (6) 

Here the k is the exponential function degree of fall, the threshold is α × thuniv, and α is 
the flexibility parameter. α controls the threshold value and makes it more flexible than 
soft and hard thresholds. The Bayesian threshold has better performance than the 
universal threshold. So, Elyasi et al. (2016) proposed a modified threshold function and a 
novel framework to calculate the value. For coefficient thresholding, they adopted soft 
thresholding. And the soft thresholding is known for its unwanted spikes in the 
histogram. Randhawa et al. (2019) presented a unique threshold calculation method and a 
more advanced version of the exponential thresholding function. The thresholds were 
calculated separately for each sub-band. Instead of having a single threshold, they 
preferred to have a unique threshold for each sub-band. The threshold value calculation 
and the thresholding function are in equations (7) and (8). 

( ) ( )
log(1+ )

niv l
l

thu Sth S l=  (7) 

(| | ).
( )

l c thc if c th
f c

c if c th

− <
=  ≥

β
 (8) 

Here, S is the sub-band and l is the level of decomposition of the image. The universal 
threshold is calculated for each sub-band at each level. The value β was taken within the 
range [1, 100], and the best outcomes were for β = 7. There has also been an attempt to 
apply the combination of anisotropic diffusion and wavelet thresholding to reduce 
speckle noise (Singh et al., 2021). The study was in 2021, where the anisotropic diffusion 
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was applied to the approximation sub-band. And for the rest of the sub-bands, the soft 
thresholding with the universal threshold was applied. The idea was unique, but the 
improvement observed was not very overwhelming. Another study by Bedi and Sunkaria 
(2022) used the exponential thresholding function as in Andria et al. (2013). Instead of 
calculating the threshold for each sub-band, they used a global threshold for each  
sub-band on the same level. The calculation of the threshold (thbedi) is in equation (9). 

( )2 2
2 n d

bedi
n

var var
th δ var

 −
=   

 (9) 

Here the 2 log( )δ M N= ×  where M × N represents the total number of pixels in the 
image or the length of the image. 

3 Materials and method 

3.1 Dataset 

In this literature, we have applied the proposed technique for denoising different types of 
US images. We have used breast, liver, and foetus US images for performance testing. 
All the datasets used here are public datasets and are available online. The dataset for 
breast US images was made online by Al-Dhabyani et al. (2020). The dataset has a total 
of 780 images of the breast of different women. It contained both cancerous and  
non-cancerous breast US images. For the US images of the foetus, we have used the 
dataset provided by Burgos-Artizzu et al. (2020). The dataset comprises 12,400 images 
from 1,792 different patients. The dataset of liver US images is provided by Ultrasound 
Data of a Variety of Liver Masses (B-Mode-and-CEUS-Liver) –TCIA Public Access – 
Cancer Imaging Archive Wiki (n.d.). It contained 926 US images from 120 patients, and 
the images are in DICOM format. The datasets were made available after taking concern 
for patients. The mages were labelled after being critically reviewed by an expert 
radiologist. Apart from clinical US images, a large image set (1,000) of the synthetic 
image, which looks similar to breast US image was generated. Some standard images 
were also involved in this study. 

3.2 Method 

The input image Iin is first transformed using logarithmic transform. The logarithm 
transformed image I* has the speckle noise as an additive component. This is done to 
reduce the computation complexity, and the operation applied to the multiplicative 
component will affect the image too. The log-transformed image is next divided into the 
sub-band using wavelet thresholding. An example of the output image after the sub-band 
division is given in Figure 1. 

The wavelet transforms divide the image into four sub-bands, one approximation, and 
three detail sub-band. In Figure 1, it can be observed that the approximation (a) sub-band 
has most of the image details at a different resolution. And further division into sub-band 
is obtained after applying wavelet decomposition on the approximation band. In wavelet 
thresholding, this sub-band is left unchanged. Figure 2 presents the process flow of the 
complete proposed method. The diagonal sub-band coefficients were used for the 
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calculation of noise variance. Instead of using a single noise variance value for all 
resolutions, we have used different noise variances at each resolution. The diagonal  
sub-band of the corresponding resolution is used for calculating noise variance at each 
resolution. Hence the threshold value will be different for each resolution. The threshold 
value in our study comprises both the universal and the Bayesian threshold given in 
equation (10). If the noise variance is larger than the variance of the sub-band coefficients 
then the universal threshold is the threshold value. Otherwise, the Bayesian threshold is 
used as the threshold value. The steps to calculate the Bayesian threshold are in Elyasi  
et al. (2016), and the calculation of the universal threshold is in equation (1). 

univ n l

Bayes

th if var var
th

th otherwise
>

= 


 (10) 

Figure 1 The Haar wavelet transform of (a) a liver US image to decompose the image into,  
(b) sub bands (see online version for colours) 

 
(a)    (b) 

Figure 2 Process flow diagram of proposed technique (see online version for colours) 

 

The thresholding function for the coefficient modification is a tri-scale function. For 
coefficients that are smaller than even half the threshold, it is replaced by 0. The 
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coefficients with a value larger than half of the threshold are divided into two groups, and 
their corresponding thresholding function is defined in equation (11). Where β1,2 a1,2 and 
b1,2 are constant whose values were empirically selected. 

( )

( )

1 1

2 2

1

2

0 / 2

2
a w b th

a w b th

if w th
thw w if w th

w otherwise

− ∗

− ∗

<
= × < <

 ×

β

β

 (11) 

4 Results and discussion 

Since all the US images are already affected by speckle noise, they cannot be used for 
full reference quality evaluation. The performance evaluation using full reference quality 
metrics is a must to have a noise-free reference image. And a noise-free US image in the 
dataset is not available, so we have used both the standard and synthetic images. To 
validate the performance of the proposed technique for the US images, we have used 
quality metrics that do not require reference images. MATLAB was used to implement 
the proposed algorithm, and the values of all the constants are in Table 1. 
Table 1 The constants and their values 

Constants Value 

β1 4 
a1 2.5 
b1 4 
β2 7 
a2 3 
b2 3.2 
Wavelet function Dmeyer (Khatkar and Kumar, 2015) 

For comparison, we have used the Wiener filter (Baselice et al., 2018), AD, I. Elyasi. 
modified shrink, G. Andria exponential shrink, S.K. Randhawa modified exponential 
shrink, sub-band anisotropic diffusion (SBAD), 2d version of the Gabor filter (Chen  
et al., 2021), and residual learning based denoising (DCNN) (Kokil and Sudharson, 
2020). Table 2 has the value peak signal to noise ratio (S/N), mean squared error (M2E), 
and the structural similarity index (SSI) for the standard grayscale test images. Detailed 
information about these metrics is in Anwar and Rajamohan (2020). The proposed 
technique outruns all these techniques at each level of noise. Graph in Figure 3 has a 
better visualisation of the parameter variation with increasing noise variance. The 
recurrent learning-based DCNN has a little bit better performance at lower noise 
variance. But with increasing noise variance the proposed methodology outruns the 
DCNN. For the Lena image corrupted with speckle noise of variance 0.3 the proposed 
technique has 37% better SSI. For similar noise in Barbara image the proposed technique 
has 20% improved S/N than DCNN. For the highest variance of noise, the proposed 
methodology has S/N, MSE, and SSI of 21.5, 539.17, and 0.57 for the LENA and 30.92, 
56.15, and 0.61 for the Barbara image, respectively. The performance variation of 
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proposed technique can be observed from the graph in Figure 3. Unlike other techniques 
the performance of the proposed technique does not decay rapidly. With the Lena image 
corrupted with a highest-level noise the proposed methodology has shown 30.7%–172%, 
60%–340%, and 92%–380% improvements in S/N, M2E, and SSI, respectively with 
other thresholding techniques. 
Table 2 Result of denoising for standard greyscale test images 

Images Technique 
varn = 0.1  varn = 0.2  varn = 0.3 

S/N M2E SSI S/N M2E SSI S/N M2E SSI 
Lena G. Andria (2013) 24.8 561 0.38  20.6 712 0.29  13.7 1,102 0.16 

I. Elyasi (2016) 24.6 593 0.40  20.8 708 0.30  13.9 1,056 0.17 
S.K. Randhawa 

(2019) 
26.4 502 0.43  22.5 581 0.34  15.8 958 0.21 

Wiener filter 
(2018) 

25.0 517 0.41  21.9 597 0.33  16.1 928 0.21 

SBAD (2021) 19.6 795 0.30  15.7 1,468 0.27  9.2 2,327 0.10 
A.K. Bedi (2022) 29.3 276 0.69  26.4 443 0.53  19.2 847 0.25 

Gabor (2021) 25.4 497 0.46  22.3 603 0.36  15.6 1,017 0.20 
DCNN (2020) 30.8 251 0.71  27.2 363 0.57  21.2 628 0.35 

Proposed 31.2 212 0.75  29 329 0.67  25.1 529 0.48 
Barbara G Andria (2013) 30.3 112 0.51  25.8 256 0.43  20.1 568 0.33 

I. Elyasi (2016) 30.1 119 0.53  25.1 262 0.46  20.2 545 0.37 
S.K. Randhawa 

(2019) 
30.8 106 0.51  26.9 238 0.44  21.6 468 0.36 

Wiener filter 
(2018) 

31.2 91 0.5  27.4 212 0.43  23.5 432 0.33 

SBAD (2021) 29.2 232 0.47  25.7 488 0.38  19.6 786 0.26 
A.K. Bedi (2022) 31.2 85 0.73  28.3 168 0.64  25 257 0.51 

Gabor (2021)) 29.8 212 0.51  27.7 413 0.43  23.6 412 0.31 
DCNN (2020) 38.2 39 0.77  32.3 121 0.67  29 198 0.55 

Proposed 37.8 41 0.76  36.2 73 0.69  34.9 138 0.61 

We have also used a set of 1,000 (random samples of which are in Figure 4) synthetic 
ultrasound images developed in MATLAB using basic shapes of circles, ellipses, and 
sinusoidal equations. The circle and ellipse were used to create a lesion alike structure 
and sinusoidal waves were for muscle fibres and bones. We first developed these 
synthetic images and the added noises of different variances to test the algorithm’s 
efficiency. Since we have the noise-free reference image, we calculated S/N, M2E, and 
SSI. Table 3 has the average S/N, M2E, and SSI values for the 1,000 synthetic images  
de-speckled using various algorithms. The proposed technique has 19.26% better S/N, 
36.67% better M2E, and 27.27% better SSI, than the CNN-based DCNN at a noise 
variance of 0.3. The bar graph in Figure 5 shows the comparison of the de-speckling 
techniques in terms of S/N, M2E, and SSI. The S/N and M2E was normalised to 
construct the chart. The proposed technique outclasses other techniques with a significant 
margin. Figure 4 presents some of the synthetic images and their corresponding noisy and 
processed image. 
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Figure 3 (a) A line chart representing the values of (i) SSI, (ii) M2E, (iii) S/N for different 
techniques (wiener filter, I. Elyasi et al., G. Andria et al., S.K. Randhawa et al.,  
A.K. Bedi et al., SBAD, Gabor, DCNN, and the proposed) for the Barbara image 
corrupted with various noise variance (b) A line chart representing the values of (i) SSI, 
(ii) M2E, (iii) S/N for different techniques (wiener filter, I. Elyasi et al., G. Andria et 
al., S.K. Randhawa et al., A.K. Bedi et al., SBAD, Gabor, DCNN, and the proposed) for 
the Lena image corrupted with various noise variance (see online version for colours) 
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Figure 3  (a) A line chart representing the values of (i) SSI, (ii) M2E, (iii) S/N for different 
techniques (wiener filter, I. Elyasi et al., G. Andria et al., S.K. Randhawa et al.,  
A.K. Bedi et al., SBAD, Gabor, DCNN, and the proposed) for the Barbara image 
corrupted with various noise variance (b) A line chart representing the values of (i) SSI, 
(ii) M2E, (iii) S/N for different techniques (wiener filter, I. Elyasi et al., G. Andria et 
al., S.K. Randhawa et al., A.K. Bedi et al., SBAD, Gabor, DCNN, and the proposed) for 
the Lena image corrupted with various noise variance (continued) (see online version 
for colours) 
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Figure 4 Output of techniques where, (a) is the original synthetic images, (b) the intentionally 
added speckle noise, (c) Wiener filter, (d) I. Elyasi et al., (e) G. Andria et al., (f) S.K. 
Randhawa et al., (g) A.K. Bedi et al., (h) SBAD, (i) Gabor, (j) DCNN, (k) proposed 
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Figure 4 Output of techniques where, (a) is the original synthetic images, (b) the intentionally 
added speckle noise, (c) Wiener filter, (d) I. Elyasi et al., (e) G. Andria et al., (f) S.K. 
Randhawa et al., (g) A.K. Bedi et al., (h) SBAD, (i) Gabor, (j) DCNN, (k) proposed 
(continued) 

 
(j) 

 
(k) 

Table 3 The average S/N, M2E and SSI value of the denoised synthetic image set 

Technique 
varn = 0.1  varn = 0.2  varn = 0.3 

S/N M2E SSI S/N M2E SSI S/N M2E SSI 
G. Andria (2013) 38.1 185 0.61  33.0 230 0.54  26.8 451 0.35 
I. Elyasi (2016) 38.8 173 0.62  32.9 227 0.54  27.2 433 0.37 
S.K. Randhawa 
(2019) 

42.4 124 0.69  36.2 193 0.58  29.5 398 0.41 

Wiener filter (2018) 44.1 116 0.73  39.6 174 0.61  33.1 266 0.53 
SBAD (2021) 32.7 312 0.52  26.8 468 0.34  21.7 717 0.25 
A.K. Bedi (2022) 50.7 74 0.81  43.9 168 0.73  37.7 218 0.58 
Gabor (2021) 43.2 142 0.71  35.9 208 0.56  28.6 416 0.39 
DCNN (2020) 53.2 60 0.83  45.7 115 0.72  35.3 289 0.55 
Proposed 52.4 64 0.83  47.6 107 0.78  42.1 183 0.70 

Since US images develop speckles during imaging, there are no clean or noise-free US 
images. So, we cannot apply MSE, S/N, and SSI for performance evaluation. These 
metrics require an image that is noise-free to quantise the recovery. But there are metrics 
which does not require a noise-free image for reference and are called blind or no 
reference image quality metrics. Blind/reference less image spatial quality evaluator 
(BIQE) (Mittal et al., 2012) is a blind image quality metric. It uses the basic notion that 
distortion destroys the spatial properties of a natural image. Another blind quality metric 
named natural image quality evaluator (NIQE) (Mittal et al., 2013) measures the 
deviation of the image from any natural image. The last metric used as a blind quality 
metric is the perception-based image quality evaluator (PIQE) (Venkatanath et al., 2015). 
It uses independent opinion-based learning to determine the quality of the image. A lower 
value of these metrics represents a lower distortion and means better quality. 
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Figure 5 Bar graph representing the S/N, SSI, and M2E for the denoising techniques proposed by 
G. Andria (2013), I. Elyasi (2016), S.K. Randhawa (2019), A.K. Bedi (2022), SBAD 
(2021), and DCNN (2020), and filters like, Wiener filter (2018) and Gabor filter (2021) 
(see online version for colours) 

 

Figure 6 BIQE value of the original breast, liver, and foetus US image and corresponding 
denoised image (see online version for colours) 

  

We have presented a box plot in Figures 6–8 shows the value of these metrics for the 
original US image and the image after denoising. Figure 6 has the box plot for the value 
of BIQE of US images. The first box represents the values observed across the foetus 
dataset. The processed foetus image’s BIQE values are in the box next to the original. A 
similar presentation is for the liver and breast where the processed image BIQE value is 
right next to the original. As stated earlier, the value of all blind quality metrics is lower 
for a better-quality image. We can observe that the median BIQE value for original liver, 
foetus, and breast images are 50, 43, and 48, respectively. The median value for their 
corresponding processed image is 45, 38, and 38. For the processed foetus US image the 
median BIQE value is 20.8% lower than the original image. The highest BIQE value of 
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the processed image is not too from the original image. A similar presentation was 
adopted in Figures 7 and 8 for NIQE and PIQE, respectively. The box plot of the original 
image is at a higher index than the processed boxes. The median NIQE value of images is 
9, 5.5, and 5.2, while the processed image is 7.2, 3, and 4.4, respectively. The denoise 
breast US image has a 45% improved NIQE value for the original image. For the PIQE in 
Figure 8, the percentage improvement in the denoised images observed was 47%, 24%, 
and 35%. The cross mark in each box plot represents the mean value of the box. 

Figure 7 NIQE value of the original breast, liver, and foetus US image and corresponding 
denoised image (see online version for colours) 

  

Figure 8 PIQE value of the original breast, liver, and foetus US image and corresponding 
denoised image (see online version for colours) 

 

The proposed technique for denoising has a hybrid thresholding technique and a 
multiscale thresholding function. The hybrid threshold improves the ability to 
discriminate between the noisy and original pixels. And, the multiscale thresholding 
improves the recovery process by preserving the noise. The reference-based quality 
metrics has shown that the hybrid threshold and the proposed thresholding function has 
improved recovery compared to the standard techniques. The values of the PSNR, MSE 
and SSIM are lot better for the proposed technique. The values of referenceless quality 
metrics of the US images represents the quality of image that is being used for diagnosis. 
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Such quality is not acceptable for designing a computer aided detection (CAD) and might 
result in lousy human expert-based analysis. But after processing the US image using 
proposed technique the BIQE, NIQE, and PIQE has reduced substantially. These reduced 
values represent fewer distortion compared to the original version. With this much 
reduced distortions the processed image will be far more efficient as base image for CAD 
and human expert compared to the original image. 

5 Conclusions 

In this paper, we have proposed a novel speckle-noise reduction technique using wavelet 
thresholding. The proposed technique was tested on the medical US, standard, and 
synthetic images. It outperformed the best-in-class denoising techniques. For the noisy 
Barbara and Lena image, the proposed method had the S/N, M2E, and SSI of 34.9, 138, 
and 0.61, and 25.1, 529, and 0.48, respectively. And for the synthetic images the S/N, 
M2E, and SSI observed were 42.1, 18.3 and 0.7, respectively. The US images of the 
foetus, liver and breast was used in this study to analyse the outcome of the proposed 
technique. The blind or referenceless quality metrics like NIQE, PIQE and BIQE has 
shown a significant improvement in the image quality. The denoised liver US image had 
a 47% improved BIQE value. For the complete US image datasets, an improvement of 
20.8%, 45.45%, and 47% (median) was observed in BIQE, NIQE, and PIQE, 
respectively. 
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