An encryption of social network user browsing trajectory data based on adversarial neural network
by Xinliang Wang
International Journal of Web Based Communities (IJWBC), Vol. 20, No. 1/2, 2024

Abstract: In order to solve the problems of high information loss rate, poor encryption effect and long encryption time existing in traditional social network user browsing trajectory data encryption methods, this paper proposes an encryption method of social network user browsing trajectory data based on adversarial neural network. Mutual information is used to extract browsing characteristics of social network users and calculate browsing path similarity of social network users, so as to determine the clustering centre of browsing trajectory data and realise browsing trajectory data mining. Combining with adversarial neural network, the symmetric encryption and decoding model is designed, and the user browsing feature data is input into the model to realise the user browsing feature data encryption. Experimental results show that the information loss rate of the proposed method is always lower than 5%, the encryption effect is good, and the average encryption time is 53 ms.

Online publication date: Thu, 15-Feb-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web Based Communities (IJWBC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com