Detection of deepfake technology in images and videos
by Yong Liu; Tianning Sun; Zonghui Wang; Xu Zhao; Ruosi Cheng; Baolan Shi
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Vol. 45, No. 2, 2024

Abstract: In response to the low accuracy, weak generalisation, and insufficient consideration of cross-dataset detection in deepfake images and videos, this article adopted the miniXception and long short-term memory (LSTM) combination model to analyse deepfake images and videos. First, the miniXception model was adopted as the backbone network to fully extract spatial features. Secondly, by using LSTM to extract temporal features between two frames, this paper introduces temporal and spatial attention mechanisms after the convolutional layer to better capture long-distance dependencies in the sequence and improve the detection accuracy of the model. Last, cross-dataset training and testing were conducted using the same database and transfer learning method. Focal loss was employed as the loss function in the training model stage to balance the samples and improve the generalisation of the model. The experimental results showed that the detection accuracy on the FaceSwap dataset reached 99.05%, which was 0.39% higher than the convolutional neural network-gated recurrent unit (CNN-GRU) and that the model parameter quantity only needed 10.01 MB, improving the generalisation ability and detection accuracy of the model.

Online publication date: Thu, 22-Feb-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com