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Abstract: Modelling material nonlinearity is imperative in structural analysis, 
especially for earthquake, blast, impact, and environment-driven chemical 
deteriorations. Stiffness-based beams are primarily used in commercial 
software for simulating such nonlinearity. This paper presents several 
improvements of the flexibility-based method to make it better than the 
stiffness-based method. The specific developments proposed here are: 1) the 
iterative convergence for updating the state of the element sections, and 
solution of the multi-axial smooth hysteretic equation; 2) the derivation of 
consistent tangent stiffness of the smooth hysteretic model; 3) the semi-implicit 
iteration for determining the incremental corotational stress resultants. The 
proposed solution is verified satisfactorily with existing stiffness-based 
solutions for global and local nonlinear dynamic responses. The proposed 
solution performs better than the existing stiffness-based solutions regarding 
coarser element discretisation and larger time-step. The chief reasons for this 
superior performance are: 1) the multilevel iterative algorithm; 2) the consistent 
tangent operator. 

Keywords: nonlinear dynamic analysis; flexibility-based beam; stiffness-based 
beam; implicit solution algorithm. 
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1 Introduction 

Nonlinear response in structural and structural protective systems is observed in 
earthquake and wind-induced damage (Alexander et al., 2017; Ali et al., 2019; Belega  
et al., 2017; Bougteb and Ray, 2017; Ray, 2013, 2016; Ray and Reinhorn, 2012; Ray  
et al., 2013a, 2013b; Ray et al., 2015). It is observed in the blast and impact loadings 
(Anas and Alam, 2022; Anas et al., 2023a, 2023b, 2021a, 2021b, 2022). Environment 
driven chemical deterioration causes nonlinear response (Gong et al., 2023; Li et al., 
2023; Sun et al., 2023; Wang et al., 2023). Functionally graded beams exhibit nonlinear 
behaviour (Ziou et al., 2016) as well. Hence, modelling nonlinear behaviour in a beam 
element for structural analysis is of paramount importance. 

Material nonlinearity in a beam section is associated with the section’s plasticisation 
and the extent of plasticisation throughout the member length. The displacement or 
stiffness-based formulation of beam elements invariably assumes that the plastic 
behaviour is concentrated at the end nodes of the beam. This assumption of concentrated 
plasticity is a ‘mathematical abstraction because it implies infinite strains (Powell and 
Chen, 1986).’ In force or flexibility-based beam formulation, it is ensured that the 
plasticity spreads along the member length, and the member sectional stress-resultants 
remain in equilibrium with the nodal stress-resultants. Plasticisation within the beam 
sections in force-based elements is modelled by two approaches. The first approach 
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discretises the section into several fibres or integration points. The hysteretic actions of 
stresses are monitored in these segments. Finally, the instantaneous segmental stiffness is 
integrated over the cross-section area to obtain the section stiffness matrix. This approach 
is also known as the fibre-based microscopic approach (Bäcklund, 1976; Belytschko and 
Hsieh, 1973; Carlson, 1999; Kunnath et al., 1990; Kunnath, 1988; Kyakula and 
Wilkinson, 2004; Park et al., 1987; Spacone et al., 1996a, 1996b; Zeris and Mahin, 1991). 
In the second approach, the global plasticisation of the section is monitored through the 
combined hysteretic actions of the sectional stress resultants. This method is called the 
section-level macroscopic approach (Kunnath and Reinhorn, 1990; Lee and Filippou, 
2009; Powell and Chen, 1986; Ray, 2013; Reinhorn et al., 2009; Schachter and Reinhorn, 
2010; Scott and Fenves, 2006; Scott et al., 2004; Sfakianakis and Fardis, 1991; 
Sivaselvan and Reinhorn, 2002). Other methods for modelling beam elements include the 
strut and tie method (Dashlejeh and Arabzadeh, 2019), first order elasto-plastic 
formulation, and the finite difference method (Rahman and Chowdhuri, 2010). 

Despite the advantage regarding the spread of plasticity, it is to be noted that, barring 
a few (LARSA, 2016; Reinhorn et al., 2009), most commercial and academic structural 
analysis software (ABAQUS, 2016; ADINA, 2016; McKenna et al., 2016; SAP2000, 
2016) use stiffness-based beam formulations for nonlinear dynamic analysis. The chief 
reason is that the stiffness-based formulation adheres to the general finite element 
analysis procedure, whereby the incremental global displacements are interpolated to 
obtain the incremental element strains. From the latter, the element states of stress-
resultants and stiffness are updated. The force-based beam lacks the strain-displacement 
interpolation function. Further, the force-based beam requires iterations for section-level 
convergence, which is perceived to add up to the computational cost. 

This paper proposes a novel procedure for nonlinear dynamic analysis of planar 
structures using the flexibility-corotational beam by performing the following 
convergence checks: 

1 the iterative convergence check for updating the state of the element sections at GL 
nodes 

2 the iterative convergence check for the solution of the multi-axial smooth hysteretic 
equation using the backward Euler formulation; in addition to the convergence check 
of global force vector at dynamic degrees of freedom. 

Further, the consistent tangent stiffness for the smooth hysteretic model is derived, which 
enables faster convergence (Simo and Taylor, 1985). A semi-implicit procedure for 
predicting the direction vector of element corotational incremental stress-resultants is also 
proposed, which simulates the switching between the elastic and inelastic stiffness matrix 
of the beam section. These developments demonstrate that the force-based beam 
performs better than the stiffness-based beam’s implementation in the state-of-the-art 
commercial software ABAQUS and ADINA, as far as: 

a handling larger time steps 

b coarser discretisation of the structure are concerned. 

Section 2 describes the equilibrium of the beam element with both material and 
geometric nonlinearity. The state-of-the-art solution algorithm with state updating 
methods is described in Section 3. The proposed novel developments in the solution is 
described in Section 4. Verification of the proposed solution with existing stiffness-based 
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solutions from ABAQUS and ADINA is shown in Section 5. The advantages of the 
proposed solution algorithm over existing stiffness-based solutions are demonstrated in 
Section 6. Finally, the concluding remarks are given in Section 7. 

2 Equilibrium statement of the geometrically nonlinear inelastic 
flexibility-corotational planar beam 

In the corotational formulation by Ray (2016), Ray et al. (2015) (Figure 1), the rigid body 
movement of the element’s chord with respect to a stationary global coordinate system 
(subscript g) and the member deformations (qi’s) in the corotational coordinate system 
(subscript c) are treated separately. The section orientation is expressed in the member 
coordinate system (subscript m). 

The equation (2.1) represents the equilibrium of the beam section. Fm ⊂ R3 is the 
stress-resultant vector (axial, shear, and moment) in the member coordinate, Fo ⊂ R3 is 
the unidirectional yield value of Fm, and Δεm ⊂ R3 is the work-conjugate (strains and 
curvatures) of Fm. 

( )( )
( ) 1

Δ Φ , ,Δ Δm m m m m
o

m m

F F F F ε
−

=

=

k

f k
 (2.1) 

Q ⊂ R3 is the corotational stress resultant, whose work conjugates is the Δq (Figure 1). 
denotes the translational location of any beam section j with respect to the chord. 

Figure 1 Coordinate systems, stress resultants (Qi), and displacements and rotations (qi) in 
corotational coordinates 

 

The Gauss-Lobatto (GL) integration points are chosen as it ensures that the end nodes of 
the beam, whose likelihood of attaining inelasticity is maximum, are included. Φ ⊂ R 
represents the multi-axial yield function of Fm. The continuum version of the smooth 
hysteretic model and the corresponding section stiffness matrix km (Ray et al., 2013) is 
expressed as follows. 
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( )( ) ( ) { }( )( )

1 2

1 2

Δ (1 ) Δ Δ

Δ

Φ ,  1 Δ 2,  (1 )

mh m mh m
T Tm m m

m

N Tmh mh mh mh m

F a ε H H ε

a ε

H F H sign F F F a F

 = − − ∂ ∂ ∂ ∂ 
+

= = + = −

Φ Φ Φ Φe e eF F F F

e

k I k k

k  (2.2) 

{ }1 2(1 )a H H a= − − +m
e ek k I I k  (2.3) 

Here a is the post-elastic hardening coefficient. Fmh is the hysteretic part of the sectional 
stress resultants. ke is the diagonal elastic stiffness matrix of the section involving the 
axial (AE), flexural (EI), and shear rigidities (GJ). N, H1, and H2 are scalar coefficients 
that control the smooth transition from the elastic to the inelastic stage. The consistent 
version of the section stiffness matrix will be derived later in this paper. The incremental 
equilibrium equation for the beam element in the corotational coordinate system is 
written as follows: 

( ) ( )1

1

Δ Δ 2
n

j
j

Q q w L−

=

= = =c c c T m
j jk k f B f  (2.4) 

kc and fc are the corotational stiffness and flexibility matrices, respectively. n is the total 
number of GL integration points (j) considered for integrating the section flexibility 
matrix m

jf  over the beam length (L), with weights wj. Bj is the equilibrium matrix that 

maps Q onto Fm. It is expressed in terms of ζj, ηj, L, and the rotation matrix m
jR , per 

equation (2.5). m
jθ  denotes the section rotation with respect to the corotational coordinate 

at the jth GL point. 

( )
( ) ( )
( ) ( )

cos sin 01 0 0
0 1 1 ,         sin cos 0

1 0 0 1

m
j

T

m m
j j

m m
j j

j j j

F Q

θ θ

L L θ θ
η ζ L ζ L

=

=

  
  = − − = −  
  −   

j

m
j jj

m
j j

B

B R B

B R

 (2.5) 

The incremental equilibrium equation of the beam in global coordinates, which relates 
the global nodal stress resultant vector Fg ⊂ R6 with its work conjugate Δug ⊂ R6 is given 
by: 

Δ Δ Δ Δg T T T T T T gF Q Q u= + +gl gl gl c glR Tr R Tr R Tr k TrR  (2.6) 

Rgl represents the chord’s rotation matrix and is given similarly as m
jR  in the equation set 

(2.5). Tr maps Q onto the corotational coordinate’s full (dependent) nodal stress resultant 
vectors. Equation (2.6) manifests a two-dimensional flexibility-corotational beam 
element’s full geometric and material nonlinearity. By combining the individual terms on 
the right-hand side, the equation (2.6) can be expressed compactly as: 

Δ Δg gF u= gk  (2.7) 
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Here kg is the instantaneous global stiffness matrix of the beam element. The 
performance of this element within the context of geometric nonlinearity is adequately 
demonstrated by Ray (2016). This paper will illustrate its capability to simulate material 
nonlinearity. 

3 The solution of the nonlinear dynamic equation with state updating of 
the force-based beam element 

The equation of motion of the structure for an input ground acceleration agm is expressed 
as: 

2

2 s gm
d u du f a
dt dt

+ + = −m c m  (3.1) 

Here m is the dynamic mass matrix; c is the damping matrix. fs is the nonlinear restoring 
force, and u is the displacement vector. The Newmark method with coefficients γ = 0.5,  
β = 0.25 is used. The element states, followed by the restoring force fsi, are updated per 
the following steps. 

1 The global nodal incremental deformation vector Δug is obtained from Δu. 

2 Δq is calculated as follows. 

Δ Δ gq u= glTrR  (3.2) 

3 ΔQ is obtained from Δq per section 4. 

4 m
jFΔ  is obtained at each GL node from ΔQ by using the equation (2.5). 

5 The vectors ( ), ,m m
j jF ε m

jk  are updated per section 4. ( ), ,j jζ η m
jR  are updated per 

(Crisfield, 1997; Ray et al., 2015). 

6 Rgl is updated using the quaternion-based process (Ray, 2016). 

7 The updated Q is calculated as 

( ) 1

1

1 n
m
j

j

Q F
n

−

=

=  jB  (3.3) 

8 The global convergence at dynamic degrees of freedom is checked as follows. 
a The current dynamic restoring force fsi is obtained from Fg using the  

equation (3.4). 

#

g
si

elements

f F Q← =  glT TR Tr  (3.4) 

b The current unbalanced force Δfs_unbal is calculated as follows. 

_Δ Δs unbal so s sif f f f= + −  (3.5) 

c Let the convergence tolerance be εf. The global convergence is checked as 
follows. 
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( )_Δ Δs unbal so s fif f f f ε converged+ <   (3.6) 

If the convergence check is failed, then the iteration restarted by solving the  
equation (3.1) and by setting _Δ Δs unbal sf f→  

9 Finally, 
2

2,  ,du d uu
dt dt

 are updated following standard procedures. 

4 Proposed novel developments in the solution process 

4.1 The proposed formulation of the consistent instantaneous stiffness of the 
smooth hysteretic model 

Let us define Ψ as follows. 

( )1 3Ψ ΦT
x= ∂ mhF  (4.1) 

The hysteretic part of the equation (2.2) gets modified as follows. 

( ) ( )
( ){ }

1 2 3

1 2 2

3

,    Φ Ψ Ψ Ψ ,

Ψ ,  (1 )

mh mh
o

m m N T
h o h h

T m m
h o h

F F f f f
f ε ε f H

f ε ε a

− = −

= − =

= − = −
e e e

e e e

k k k

k k k

 (4.2) 

Fmh and mh
oF  are the final and initial hysteretic section stress resultants. Similarly, the 

strains ( ),m m
oε ε  are defined. The consistent instantaneous stiffness is defined as follows. 

( ) ( )Δ Δ Δm
mh m m mh m m

εF ε ε F ε ε∂ ∂ = ∂ = m
consk  (4.3) 

This can be found by taking the variation of the equation (4.2) as follows. 

( ) ( ) ( ) ( )1 3 2 2 3Δ Δ Δ Δm m m m
mh m m m m

ε ε ε εF ε f ε f f ε f f ε∂ = ∂ − ∂ − ∂  (4.4) 

The derivatives on the right-hand side of the equation (4.4) are given by  
equations (4.5)–(4.7). 

( )1 Δ Δm
m m

ε f ε ε∂ = ehk  (4.5) 

( ) ( ) ( )
( ) ( )

( ) ( ){ } ( )

1
2 2 2

2
2

Δ Ψ Φ Ψ Δ Φ Ψ

Δ Ψ Ψ

Φ Ψ 2Ψ Ψ Δ Ψ Ψ

m m mh

m

mh m

m N T mh m N
ε ε F

mh m T
ε

N T T mh m T
F ε

f ε H N F ε H

F ε

H F ε

−∂ = ∂ + ∂
∂ 

− ∂ ∂

eh eh

eh

eh eh eh

k k

k

k k k

 (4.6) 

( ) ( ) ( ) ( )3 Δ Ψ Δ Ψ Δm mh m
Tm T m m m T mh m

oε F εf ε ε ε ε F ε∂ = + − ∂ ∂eh ehk k  (4.7) 

Using the equations (4.4) through (4.7), we get the following: 
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T

F ε E ε

f H N H

H

f ε ε
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−

∂ =
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−

+ − ∂

= −

1

1 eh eh eh

eh eh eh

eh

2 eh eh

E

E I k k k

k k k

k

E k k

 (4.8) 

Finally, considering the effect of the post elastic hardening, the consistent instantaneous 
stiffness is given by the equation (4.9). 

am -1
cons 2 e1k = E E + k  (4.9) 

4.2 Proposed semi-implicit iteration for determining the incremental 
corotational stress resultant vector 

After Δq is obtained from the equation (3.2), we must get ΔQ using kc. However, it can 
be realised that the formulation of kc requires ΔFm, which can only be determined if ΔQ 
is known. The following semi-implicit steps are proposed for this: 

a Estimate ΔQ from the equation (2.4) using the existing kc. 

b Estimate ΔFm using the estimated ΔQ from the equation (2.5). 

c Calculate the revised kc using the estimated ΔFm and the consistent tangent stiffness 
for the beam sections at GL nodes. 

d Calculate the revised ΔQ from the equation (2.4). 

4.3 Proposed implicit solution algorithm of the smooth hysteretic equation 

For an incremental input strain Δεm = ε–εo and the current stress resultant (Fm)0, the 
equilibrated state of stress resultant Fm is calculated by solving the equation (2.2), which 
can be expressed through the backward Euler formalism as: 

( ) ( )0: ,Δ 0m m m mg F F h F ε= − + =  (4.10) 

Here g, h ⊂ R3. Per the standard Newton-Raphson method of iteration, the updated 
iterative stress resultant state (Fm)n+1 is given by the equation (4.11). 

( ) ( ) ( )( ) ( )( )11 ,Δ ,Δm
n n n nm m m m m m

FF F g F ε g F ε
−+  = − ∂   (4.11) 

Iterations are terminated when ( ) ( )0 ,Δ .m m m
fg F h F ε ε+ <  

In the equation (4.11), mF g∂  is calculated by assuming Δε as constant. Further, the 
derivatives are computed using the equations (4.5)–(4.7) with appropriate modifications. 

The above method requires an initial guess for the stress state (Fm)0. The nearer the 
guess to the final solution, the lesser the number of iterations. Hence (Fm)0 is estimated 
here by using the last available consistent tangent stiffness as: 
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( ) ( ) ( )( )0 0 0 ,Δ Δm m m m mF F F ε ε= + m
consk  (4.12) 

Note that the above solution is performed for all the GL nodes in an element. 

4.4 The proposed iterative process for element section state updating 

Once Δ m
jF  ‘s are obtained from step 4 in section 3, ( ),  ,  and m m

consj j jF ε mk  are needed to 
be updated. The Newton-Raphson method is used for this update, as explained below. 

a Calculate the trial Δ m
jε  using the consistent tangent stiffness, as shown below. 

( ) 1Δ Δm m
j jjε F−= m

consk  (4.13) 

b Solve the equation (2.2) using Δ m
jε  to generate the updated _ .m

j updtF  

c Check the convergence of the stress resultants as follows. 

( )_  Δ Δm m m m m
fj j j jj updtif F F F F F ε converged− + + < →  (4.14) 

d Update ( ),  ,  and .m m
consj j jF ε mk  

e If convergence is not achieved, set and restart the iteration. 

5 Verification of the proposed force-based beam structure simulation with 
the stiffness-based beam structure analysis 

A two-bay two-story fixed base frame built with the AISC S20x66 beam, as shown in 
Figure 2, is modelled to verify the proposed developments. The steel yield strength is 
adopted as 344.74 MPa (= 50 ksi). The post-elastic hardening coefficient is adopted as 
0.02 with kinematic hardening. The yield values of the axial (Py), and bending moment 
(My) are adopted as 4,270.29 kN and 923.64 kN-m. The elastic modulus is adopted as 200 
GPa. The horizontal translational mass lumped at each beam-column joint is 17,512.68 
kN-sec2/m (= 100 kips-s2/inch). The mass density of the material is ignored. Modal 
damping of 5% is considered in all six dynamic modes. The convergence tolerance εf is 
assumed as 10–4. The first 27 seconds of the 1,940 Imperial Valley accelerogram with 
input time steps of 0.02 sec and the peak acceleration scaled to 1.6 g is considered for the 
analysis. The acceleration is increased to subject the frame to severe nonlinearity so that 
the stability and robustness of the proposed solution can be tested. 

The columns are assumed to carry zero initial axial loads. The following quadratic 
interaction between the axial load (P) and bending moment (M) is considered: 

2 2Φ 1 0y yP P M M≡ + − =  (5.1) 

The stiffness-based analysis is simulated using the beam element of ABAQUS and 
ADINA (ABAQUS, 2016; ADINA, 2016) with fixed analysis time step dt = 0.00001 s. 
and four elements per member. The time step for the proposed force-based beam 
structure solution is adopted as dt = 0.0004 s, and one element with five GL nodes per 
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member is considered. Figure 3 compares the history of the story drifts between the 
proposed solution, ABAQUS, and ADINA. It can be observed that the responses from 
these solutions match appreciably. The maximum absolute difference in % story drift 
between the proposed and ABAQUS solutions is 2.5%, and that between the proposed 
and ADINA is 5%. 

Figure 2 Elevation of the prototype frame 

 

Figure 3 Comparison of the story drift responses between the proposed solution, ABAQUS, and 
ADINA 

  

Figure 4 shows the comparison of the bending moment histories at the base node  
(node-1) and the GL node next to it (node-2) of column-1 (refer to Figure 2). The 
bending moment histories compare well, given that the ABAQUS and ADINA beam 
models are microscopic fibre-based and the proposed beam is macroscopic. The 
maximum absolute difference in the bending moment is 15%. 
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Figure 5 shows the moment-curvature (M-χ) responses from the proposed solutions 
for the two nodes mentioned above with two different time steps (dt = 0.02, 0.0004 s). It 
can be verified that the force-based beam can simulate the spread of plasticity along its 
length, as the M-χ response of node-2, which is adjacent to the base (refer to Figure 2), 
also shows hysteresis. The analysis with two different time steps shows some differences 
in curvatures. However, that difference does not spell much effect on the moment 
response and the global story drift response, as shown in section 6. In summary, it can be 
ascertained that the proposed solution with the macroscopic force-based beam compares 
well with the microscopic stiffness-based solutions. 

Figure 4 Comparison of the bending moment responses between the proposed solution, 
ABAQUS, and ADINA (see online version for colours) 

  

Figure 5 Moment-curvature hysteretic responses from the proposed solution for different time 
steps (see online version for colours) 
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6 Advantages of the proposed force-based formulation over the stiffness-
based formulation 

6.1 The capability of handling larger time steps 

The prototype structure with one element per member and 5 GL nodes per element is 
analysed with fixed time steps dt = 0.0004, 0.00667, 0.01, and 0.02 s (time step of the 
input ground motion). The story drift responses for all these cases are shown in Figure 6. 
The same structure with four elements per member was attempted to analyse in 
ABAQUS and ADINA with the same fixed time steps, with both full-Newton and  
quasi-Newton iterations. However, the ABAQUS and ADINA solutions failed in all the 
cases with the error message that the fixed time increment was too large. ABAQUS 
could produce a solution when variable dt = 0.02-0.00001s was allowed with automatic 
time increment. The same is true for ADINA with variable dt = 0.02-0.0004s. Figure 6 
shows that the proposed solution’s responses are almost independent of the time steps, 
and the proposed solution can handle much larger time steps than the stiffness-based 
solutions of ABAQUS and ADINA. 

6.2 The capability of analysis with coarser discretisation 

The prototype frame was analysed with the proposed force-based beam with one element 
per member but with 2, 3, 4, and 5 GL nodes per element. The analysis time step in each 
case was 0.02 sec. The story drift responses for all these cases are shown in Figure 7. 
With an increase in GL points, the solution converges. Nevertheless, it is to be noted that 
the member discretisation was kept at one element per member, which is the coarsest 
possible. The maximum absolute difference in story drift between the 2-point and 5-point 
integration is less than 6%. 

Figure 6 Comparisons of the story drift responses from the proposed solutions with larger time 
steps 
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Figure 8 shows the story drift responses of the frame from the ABAQUS solution with 1, 
2, 3, and 4 elements and dt = 0.02-0.00001 sec. It is observed that the responses converge 
with finer discretisation, as expected. However, the absolute difference between the 
responses with 1 and 4 element(s) per member is enormous (> 16%). Hence, it is 
ascertained that the proposed solution can handle coarser discretisation better than the 
implementation of the stiffness-based solution in ABAQUS. The similar solutions from 
ADINA (Figure 9) match quite well with each other. However, as noted earlier, ADINA 
solutions differed from ABAQUS and the proposed solutions when finer discretisation 
and smaller time steps were adopted. 

As this formulation is tested for its robustness, sensitivity analyses with respect to 
coarser discretisation and larger time steps are done here. The study with various moduli 
of elasticity, post-elastic hardening, Py, My, etc. are appropriate for response spectrum 
analyses. Interested readers can find such a study in Sultana and Ray (2020). 

Figure 7 Comparison of the story drift responses from the proposed solution with lesser gauss-
LOBATTO (GL) points (see online version for colours) 

   

Figure 8 Comparison of the story drift responses from ABAQUS with coarser discretisation  
(see online version for colours) 
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As this formulation is tested for its robustness, sensitivity analyses with respect to coarser 
discretisation and larger time steps are done here. The study with various moduli of 
elasticity, post-elastic hardening, Py, My, etc. are appropriate for response spectrum 
analyses. Interested readers can find such a study in Sultana and Ray (2020). 

Figure 9 Comparison of the story drift responses from ADINA with coarser discretisation  
(see online version for colours) 

  

7 Concluding remarks 

The paper discusses several developments in force-based beam structure’s nonlinear 
dynamic solution process. These developments include: 

1 updating the beam section’s state of stress resultants, strain, and stiffness iteratively 

2 a strain-driven solution of the smooth hysteretic equation using an iterative backward 
Euler formalism 

3 a consistent tangent operator of the multi-axial smooth hysteretic model 

4 prediction of the incremental corotational stress resultants by a semi-implicit 
integration. 

The proposed solution is verified with state-of-the-art stiffness-based beam models from 
ABAQUS and ADINA. The two solutions’ global story drift responses and the local 
beam sectional bending moment responses are compared well. The proposed solution 
also demonstrated the spread of plasticity along the beam length, as expected with the 
flexibility-based beam. It is further shown that the proposed solution performs better than 
the ABAQUS and ADINA solutions in handling larger time steps and coarser 
discretisation of the structure. The multilevel iterative process and consistent tangent 
operator used in the proposed formulation enabled these superior performances. 

The application of this algorithm applies to both ductile and brittle materials. The 
multiaxial yield surface, as defined in the equation (2.1) and the post-elastic hardening 
coefficient a, as defined in the equations (2.2) and (2.3), will control ductility or 
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brittleness. The yield surface will shrink for brittle materials, and post-elastic hardening 
will be negative. 

The current formulation for dynamic analysis is for two-dimensional beam elements. 
The authors will extend the same for three-dimensional beams with combined material 
and geometric nonlinearities. 
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