Dark web data classification using deep neural network
by P.J. Sathish Kumar; J. Jency Rubia; R. Anitha; Sheshang Degadwala
International Journal of Electronic Security and Digital Forensics (IJESDF), Vol. 16, No. 2, 2024

Abstract: The dark web is an overlay network comprised of the darknet, which can only be accessed via specialised software and a predetermined permission scheme. This article investigates the development of dark web intelligence as a means of enhancing cybercrime prevention tactics in several countries. On the basis of machine learning, we develop, analyse, and assess the effectiveness of darknet traffic detection systems (DTDS) in IoT networks. We focused at the safety features that are available to users, as well as their motivations and the ability to revoke their anonymity. In addition, we perform a depth analysis by automating the process of detecting hostile intent from the darknet. Finally, we compared our proposed system to various already existing DTDS models and showed that our best results are an improvement of between 1.9% and 27% over the models that were previously considered to be state-of-the-art.

Online publication date: Fri, 01-Mar-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electronic Security and Digital Forensics (IJESDF):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com