Latent fingerprint segmentation using multi-scale attention U-Net Online publication date: Fri, 01-Mar-2024
by P. Akhila; Shashidhar G. Koolagudi
International Journal of Biometrics (IJBM), Vol. 16, No. 2, 2024
Abstract: Latent fingerprints are the fingerprints lifted from crime scene surfaces. Segmentation of latent fingerprints from the background is an important preprocessing task which is challenging due to the poor quality of the fingerprints. Though fingerprint segmentation approaches based on their orientation and frequency are reported in the literature, they could not adequately address the problem. We propose a latent fingerprint segmentation model based on the U-Net attention network in this work. We added the Atrous Spatial Pyramid Pooling (ASPP) layer to the network to facilitate multi-scale fingerprint segmentation. Our approach could effectively segment the latent fingerprint region from the background and even detect occluded and partial fingerprints with simple network architecture. To evaluate the performance, we have compared our results with the manual ground truth using NIST SD27A dataset. Our segmentation model has improved matching accuracy on the NIST SD27A dataset.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com