Food safety supply chain from perspective of big data algorithm and energy efficiency
by Mian Deng; Yong Wang
International Journal of Global Energy Issues (IJGEI), Vol. 46, No. 3/4, 2024

Abstract: At present, food safety incidents emerge in an endless stream, so the relevant fields related to food safety issues have become a research hotspot. In order to effectively ensure food safety, it is necessary to control all aspects of the supply chain. In order to test the effect of Principal Component Analysis (PCA) and mutual Information Principal Component Analysis (MI-PCA) on the data set, the loss value and the predicted value of the data set were compared. The results show that the predicted value of PCA algorithm fluctuates obviously, while the predicted value of MI-PCA algorithm tends to be stable after 100 iterations. The prediction accuracy is also greater than 95%, and the prediction effect is good.

Online publication date: Fri, 01-Mar-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Energy Issues (IJGEI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com