Clustering ensemble by clustering selected weighted clusters Online publication date: Mon, 11-Mar-2024
by Arko Banerjee; Suvendu Chandan Nayak; Chhabi Rani Panigrahi; Bibudhendu Pati
International Journal of Computational Science and Engineering (IJCSE), Vol. 27, No. 2, 2024
Abstract: Due to the fact that no single clustering approach is capable of producing the optimal result for any given data, the notion of clustering ensembles has emerged, which attempts to extract a novel and robust consensus clustering from a given ensemble of base clusterings of the data. While forming the consensus, weights can be assigned to the base clusterings or their constituent clusters to prioritise those that accurately represent the underlying structure of the data. In this paper, we present a novel method of cluster selection from base clusterings and subsequently merging selected clusters into desired number of clusters in order to build a high-quality consensus clustering without gaining access to the internal distribution of data points. The method has been shown to work well with a wide range of data and to be better than many well-known clustering methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com