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Abstract: In model matching design, the controller is determined by minimising the matching
error between the reference model and the actual control system. Virtual reference feedback
tuning (VRFT), a data-driven approach, uses a pre-filter to compensate for matching errors
between model-based and data-driven functions. Designing the pre-filter in the time domain
rather than the frequency domain allows the controller to be designed without limiting the types
of initial process inputs. Conventional time-domain-based VRFT is designed as a single-rate
method that is uniform over the entire period. When certain periods are limited by hardware
performance or other factors, performance can be improved by setting the unrestricted period
independently of the restricted period. In this study, time-domain-based VRFT is extended to
a dual-rate system where the sampling period of the process output and the holding period of
the process input are different. The control performance of the proposed dual-rate system is
superior to that of the conventional single-rate system because the process input can be updated
more frequently than in the single-rate system, even when the sampling period is limited by
sensor performance or computational load.
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In this new society, data itself is becoming increasingly
important. The importance of data has been reaffirmed in
the field of control engineering as well, and data-driven
methodologies, which design control systems directly from
data, are attracting attention (Prag et al., 2022). Data-driven
design methodologies are mainly divided into iterative
and non-iterative approaches. In the iterative approach
(Hjalmarsson et al., 1998; Bruyne, 2003; Yokoyama et al.,
2015; Yokoyama and Masuda, 2016), the optimal solution
is obtained through repeated control trials and optimisation,
while in the non-iterative approach (Yahagi and Kajiwara,
2022), the optimal solution is obtained based on one-shot
control data. Both approaches have their advantages and

1 Introduction

Society 5.0 (Fukuyama, 2018) is proposed in the Fifth 
Science and Technology Basic Plan as the future society 
that Japan should aspire to, and will be realised through 
a system that highly integrates cyberspace and physical 
space. In Society 5.0, the internet of things (IoT) 
and artificial intelligence (AI) will collect, analyse, and 
determine necessary information, and incorporate advanced 
technologies into all industries and social life, thereby 
achieving both economic development and solving social 
issues.

Copyright © 2024 Inderscience Enterprises Ltd.
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disadvantages, while this study focuses on the advantage
of obtaining the optimal solution from one-shot trials
and discusses design methods in the time domain in the
non-iterative approach.

Various non-iterative methods have been proposed,
including robust design (Rojas and Vilanova, 2012;
Bertsimas et al., 2018) and model matching problems
(Breschi et al., 2021; Breschi and Formentin, 2021).
Data-driven methods for single-rate systems, such as virtual
reference feedback tuning (VRFT) (Campi et al., 2002;
Gonçalves da Silva et al., 2016), fictitious reference
iterative tuning (FRIT) (Kaneko et al., 2012), and
non-iterative correlation-based tuning (NCbT) (Yubai et al.,
2011), have since been extended to dual-rate systems (Ito
et al., 2018b,a; Sato et al., 2021b,a, 2022). In sampled
data control systems (Chen and Francis, 1995), where a
continuous-time process is controlled by a discrete-time
controller, dual-rate systems that allow multiple signal
periods can be designed to be more flexible than single-rate
systems (Sato et al., 2013).

Since most conventional dual-rate data driving methods
design controllers based on the model matching problem, it
is important to design a pre-filter that compensates for the
matching error between the original objective function and
the actual objective function. Matsui et al. have proposed a
pre-filter design method in the time domain (Matsui et al.,
2016, 2017). In such time-domain design, the controller can
be designed without limiting the input signals. However,
conventional time-domain designs have been proposed for
single-rate systems. Since the performance of dual-rate
systems is expected to be better than that of single-rate
systems, this study extends data-driven time-domain design
to dual-rate systems. The effectiveness of the proposed
method is verified by numerical examples.

The remainder of this paper is organised as follows. In
Section 2 a process controlled as a dual-rate system and the
control law for controlling it are described, and the design
method of the control law is shown in Section 3. Section 4
shows the effectiveness of the proposed method through
numerical examples, and Section 5 concludes this study.

Herein, Ii denotes an i× i identity matrix, and ⊗
denotes the Kronecker product.

2 System description

A controlled process is a linear time-invariant
continuous-time single-input-single-output (SISO) system,
and it is controlled using digital processors operated in
discrete time domain. There are hence the sampling periods
of continuous-time signals and the holding periods of
discrete-time signals. The process dynamics are given as
follows:

ψ(z) = G(z)υ(z) (1)

where ψ(z) and υ(z) are the Z-transforms of process output
ψ(k) and input υ(k), respectively and G(z) denotes a
process model and is assumed to be unknown. In this study,
the process is controlled in a dual-rate system as shown in

Figure 1(a), the sampling period of a process output, Ts, is
an integer (m) multiple of the holding period of a process
output, Th, and the dual-rate process model is expressed as
follows:

ψ(z) = G(z)υ(z)

υ(z) = [z−m+1υ(z) z−m+2υ(z) . . . υ(z)]⊤ (2)

G(z) is the lifted system of G(z) and is also unknown. In
this study, a control law is designed based on data.

Consider the feedback control system illustrated shown
in Figure 1(b), where the process is controlled using a
fixed-structure control law as follows:

υ(z) = Γ(z,ϑ)ϵ(z) (3)
Γ(z,ϑ) =D(z)ϑ (4)
ϵ(z) = ψr(z)− ψ(z) (5)

where D(z) and ϑ are the controller structure and
controller parameters, respectively, and ψr(z) is the
Z-transform of a reference input ψr(k). Based on collected
control data, ϑ is determined based on a model matching
error.

Figure 1 Dual-rate system, (a) output and input periods
(b) block diagram

(a)

(b)

Notes: Ts: output period, Th: input period.

3 Data-driven design in dual-rate system

The design objective is to match a closed-loop system to
a reference model, and the objective function is defined as
follows:

J0(ϑ) = ∥ϵ0(z,ϑ)∥22 (6)
ϵ0(z,ϑ) = FW (z) (Ω(z)−Gcl(z)) (7)

Gcl(z) =
G(z)Γ(z,ϑ)

1 +G(z)Γ(z,ϑ)
(8)
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where Gcl(z) is the closed-loop system from the
reference input to the process output, Ω(z) is the reference
model that Gcl(z) should match, and FW (z) is a weighting
factor.

In contrast to a dual-rate system, a single-rate system in
which the holding period must equal the sampling period is
designed as shown in Figure 2, and its objective function is
given as follows:

JSR
0 (ϑ) =

∥∥ϵSR
0 (z,ϑ)

∥∥2
2

(9)

ϵSR
0 (z,ϑ) = FSR

W (z)
(
Ω(z)−GSR

cl (z)
)

(10)

GSR
cl (z) =

G(z)Γ(z,ϑ)

1 +G(z)Γ(z,ϑ)
(11)

where Γ(z,ϑ) is a single-rate control law. When the
sampling period is the same for the dual-rate single-rate
systems, the process input in the dual-rate system can be
updated more frequently than in the single-rate system.
Therefore, the control performance of the dual-rate system
can be improved over that of the single-rate system.

Figure 2 Single-rate system, (a) output and input periods
(b) block diagram (Ts = Th)

(a)

(b)

In the objective function equation (6), process model G(z)
is included, and the function cannot be directly minimised
when the model is unknown. In this study, the next lemma
is introduced.

Lemma 1: Equation (12) is equal to equation (6).

J(ϑ) = ∥ϵ(z,ϑ)∥22 (12)
ϵ(z,ϑ) = FL(z)[υ0(z)− Γ(z,ϑ)ϵ̄(z)] (13)
ϵ̄(z) = ψ̄r(z)− ψ0(z) (14)

ψ̄r(z) =
1

Ω(z)
ψ0(z) (15)

FL(z) = FW (z)(1− Ω(z))Ω(z)Υ−1
0 (z), (16)

where υ0(z) and ψ0(z) are initial control input/output data
that are measured from open-loop or closed-loop control.
An inverse filter Υ−1

0 (z) outputs a unit impulse function
when υ0(k) is input, and the relationship in the Z domain
is described as follows:

Υ−1
0 (z)υ0(z) = 1. (17)

Υ−1
0 (z) is designed in the time domain as a finite impulse

response (FIR) filter:

Υ−1
0 (z) = ν⊤

0 + ν⊤
1 z

−1 + . . .+ ν⊤
Nυ−1z

−(Nυ−1) (18)

where Nυ is the design parameter and is assumed to be
sufficient large to satisfy equation (17). The determination
of the coefficients in equation (18) is given in Appendix.

In contrast to the proposed method, which is designed in
the time domain, in the conventional dual-rate data-driven
method (Sato et al., 2021b), FL(z) is designed instead
of equation (16) as the lifted vector of FL(z) which is
designed in the frequency domain as follows:

|FL(e
jω)|2

= |FW (ejω)|2|1− Ω(ejω)|2|Ω(ejω)| 1

Φυ

∀ω ∈ [−π;π], (19)

where Φυ is the spectral density of υ(k).

Proof: First, assume the following equation:

Ω(z) =
G(z)Γ∗(z)

1 +G(z)Γ∗(z)
, (20)

where Γ∗(z) is an ideal controller, and the equation is
transformed as follows:

1− Ω(z) =
1

1 +G(z)Γ∗(z)
. (21)

Using equation (20), equation (7) is rewritten as follows:

ϵ0(z,ϑ)

= FW (z)
G(z)(Γ∗(z)− Γ(z,ϑ))

(1 +G(z)Γ∗(z))(1 +G(z)Γ(z,ϑ))
(22)

Using equations (20) and (21), equation (13) is also
rewritten as follows:

ϵ(z,ϑ) = FL(z)[υ0(z)− Γ(z,ϑ)
1

G(z)Γ∗(z)
ψ0(z)]. (23)

From equation (2), ψ0(z) = G(z)υ0(z), and equation (23)
is rewritten as follows:

ϵ(z,ϑ) =
G(z)(Γ∗(z)− Γ(z,ϑ))

G(z)Γ∗(z)
FL(z)υ0(z). (24)

In order to make equation (22) equal to equation (24), the
following equation must be satisfied:

1

G(z)Γ∗(z)
FL(z)υ0(z)

= FW (z)
1

(1 +G(z)Γ∗(z))(1 +G(z)Γ(z,ϑ))
. (25)
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Since G(z) is included in equation (25), it is difficult to
achieve this condition as it is. In the conventional VRFT
designs (Campi et al., 2002; Sato et al., 2021b), Γ(z,ϑ)
in the denominator polynomial of equation (22) is replaced
with Γ∗(z), and ϵ0(z,ϑ) is changed as:

ϵ′0(z,ϑ)

= FW (z)
G(z)(Γ∗(z)− Γ(z,ϑ))

(1 +G(z)Γ∗(z))(1 +G(z)Γ∗(z))
. (26)

Therefore, equation (26) equals to equation (24) when
FL(z) is designed as follows:

FL(z)υ0(z)

= FW (z)
1

(1 +G(z)Γ∗(z))

G(z)Γ∗(z)

(1 +G(z)Γ∗(z))

= FW (z)(1− Ω(z))Ω(z). (27)

Applying Υ−1
0 (z) to the above equation yields

equation (16). �

Therefore, instead of J0(ϑ), the controller parameters are
determined based on J(ϑ):

Theorem 1: The optimal controller parameter that minimises
equation (6) is obtained from input/output data as follows:

ϑ = Y −1X (28)

Y =
N−1∑
k=0

ψI(k)ψI(k)
⊤

X =
N−1∑
k=0

ψI(k)υI(k), (29)

where υI(k) is the impulse response of FW (z)(1−
Ω(z))Ω(z), and

υI(k) = Z−1[FW (z)(1− Ω(z))Ω(z)] (30)
ψI(k) = FW (z)(1− Ω(z))2Υ−1

0 (z)D(z)[ψ0(k)]. (31)

Proof: Using equation (16), equation (13) is rewritten as
follows:

ϵ(z,ϑ) = FW (z)(1− Ω(z))Ω(z)

− FW (z)(1− Ω(z))2Υ−1
0 (z)Γ(z,ϑ)ψ0(z). (32)

Equation (32) is described in the time domain as follows:

ϵ(k,ϑ) = υI(k)−ψI(k)
⊤ϑ. (33)

As a result, using the least-squares method, equation (28) is
obtained. �

4 Numerical examples

As a controlled process, consider the next transfer function:

G(s) =
100

s2 + 16s+ 100
. (34)

In this simulation, the sampling period of a process output
is Ts = 0.1 s, and the holding period of a process input is
Th = Ts/m.

Therefore, depending on the value of m, the controlled
process is represented as a single-rate system or a dual-rate
system, where when m = 1, it is single-rate control; when
m ̸= 1, it is dual-rate control. In order to compare the
single-rate and simple dual-rate systems, the process is
controlled with m set to 1 and 2, respectively.

The single-rate or dual-rate systems are controlled using
the proportional-integral-derivative (PID) control method
where the controller structure and parameters are given as
follows:

D(z) = d(z)⊤ ⊗ Im

d(z) = [d1(z) d2(z) d3(z)]
⊤

d1(z) = 1, d2(z) =
1

1− z−1
, d3(z) = 1− z−1

ϑ =

{
ϑ1 (single-rate)[
ϑ⊤
1 ϑ

⊤
2

]⊤ (dual-rate)
ϑj = [KPj KIj KDj ]

⊤. (35)

It is assumed that the process is controlled stably using an
existing single-rate control law with the initial controller
parameters as shown in Table 1(a), where the parameters
are determined by trial and error, and S-R and D-R
denote the single-rate and dual-rate systems, respectively.
Figure 3 shows the control result obtained using the initial
controller parameters for reference input 1. In Figure 3(a),
the reference model output is also plotted, where

Ω(s) =
1

0.3s+ 1
. (36)

As shown in Figure 3(a), the extremely slow response
is obtained since the initial controller parameters are
chosen to be conservative. Therefore, the initial controller
parameters is not sufficient to track the reference model
output, although the process is controlled stably. Figure 3(c)
confirms the macing error in the frequency domain.

Table 1 Controller parameters for equation (34)

(a) initial parameters

KPi KIi KDi

S-R i = 1 0.01 0.01 0.01

(b) tuned in the frequency domain

KPj KIj KDj

S-R j = 1 0.2167 2.852 0.0345
D-R j = 1 0.2191 2.838 0.0343

j = 2 0.2187 2.837 0.0343

(c) tuned in the time domain

KPj KIj KDj

S-R j = 1 0.0744 2.863 0.0055
D-R j = 1 0.0788 2.834 0.0052

j = 2 0.0788 2.834 0.0052
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Figure 3 Control result of equation (34) using the initial
controller, (a) output (b) input (c) gain
(see online version for colours)

(a)

(b)

(c)

Figure 4 Control result of equation (34) using the
frequency-domain designed S-R controller, (a) output
(b) input (c) gain (see online version for colours)

(a)

(b)

(c)
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Figure 5 Control result of equation (34) using the
frequency-domain designed D-R controller, (a) output
(b) input (c) gain (see online version for colours)

(a)

(b)

(c)

Figure 6 Control result of equation (34) using the
frequency-domain designed D-R controller, (a) output
(b) input (c) gain (see online version for colours)

(a)

(b)

(c)



Model-free design in a dual-rate system using finite impulse response filter 7

Figure 7 Control result of equation (34) using the time-domain
designed D-R controller, (a) output (b) input (c) gain
(see online version for colours)

(a)

(b)

(c)

Figure 8 Control result of equation (38) using the initial
controller, (a) output (b) input (c) gain
(see online version for colours)

(a)

(b)

(c)
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Figure 9 Control result of equation (38) using the
frequency-domain designed D-R controller, (a) output
(b) input (c) gain (see online version for colours)

(a)

(b)

(c)

Figure 10 Control result of equation (38) using the
time-domain designed D-R controller, (a) output
(b) input (c) gain (see online version for colours)

(a)

(b)

(c)
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To match the controlled process output to the reference
model output, the controller parameters are tuned using the
collected data (N = 500).

The controller parameters designed in the frequency
domain using the conventional methods (Campi et al., 2002;
Sato et al., 2021b) are summarised in Table 1(b), where
the single-rate and dual-rate PID parameters are tuned
based on the same single-rate control data. The controlled
results using the tuned single-rate and dual-rate controller
parameters are shown in Figures 4 and 5, respectively. Both
the single-rate and dual-rate output responses converge to
the reference input in the steady state, while both the output
responses overshoot slightly.

Based on the same initial control data, the controller
parameters are designed in the time domain using the
conventional single-rate system and the proposed dual-rate
system, respectively, and the obtained parameters are shown
in Table 1(c). Comparing the parameters designed in the
frequency domain and the time domain, the proportional
gains are larger in the time domain than in the frequency
domain. Conversely, the integral gains are smaller in the
time domain than in the frequency domain. Furthermore,
in the dual-rate system design, the PD gains designed
in the frequency domain are different, while the PD
parameters designed in the time domain are the same
values, respectively. The control results using the controller
parameters designed in the time domain are shown in
Figures 6 and 7. The output responses obtained using the
controllers designed in the time domain have a smaller
overshoot than those obtained using the controllers designed
in the frequency domain.

The obtained control results are evaluated using the
following performance function:

Jeval =
1

50

49∑
k=0

(ψΩ(k)− ψ(k))2

ψΩ(z) = Ω(z)ψr(z). (37)

The evaluated values are summarised in Table 2. The index
values of the time-domain designs are superior to those
of the frequency-domain designs, and the index values
of the dual-rate designs are also superior to those of the
single-rate designs. The above demonstrates the usefulness
of the proposed dual-rate time-domain design method.

Table 2 Performance index evaluation for equation (34)

Domain Update rate Jeval

Frequency S-R (Campi et al., 2002) 1.207 × 10−4

D-R (Sato et al., 2021b) 1.205 × 10−4

Time S-R (Matsui et al., 2017) 4.486 × 10−6

D-R (proposed) 3.177 × 10−6

Since the frequency- and time-domain design methods have
been compared, SR and DR controllers designed with
time-domain FIR filter are then compared. The transfer
function of a controlled process is given as follows:

G(s) =
404

(s2 + 64s+ 160)2
1

(0.8s+ 1)2
e−0.1s. (38)

The sampling period is 0.1, and the holding periods of S-R
and D-R are 0.1 and 0.05, respectively. The gains shown
in Table 1(a) are used as initial controller parameters, and
the control result is shown in Figure 8. Table 3 shows the
tuned controller parameters based on the controlled result
as shown in Figure 8. The control results for S-R and
D-R controllers using the tuned parameters are shown in
Figures 9 and 10, respectively. These results show that
the process output by D-R method has a faster rise time
and converges to the reference input faster than that by
S-R method. In addition, the performance of D-R method
in tracking the reference model is better than that of S-R
method. Table 4 also shows that the control performance of
D-R method is superior to that of S-R method.

Table 3 Tuned in the time domain for equation (38)

KPj KIj KDj

S-R j = 1 1.832 0.6504 0.8200
D-R j = 1 1.843 1.154 0.8755

j = 2 1.843 1.154 0.8755

Table 4 Performance index evaluation for equation (38)

Domain Update rate Jeval

Time S-R (Matsui et al., 2017) 7.193 × 10−3

D-R (proposed) 4.419 × 10−4

5 Conclusions

In this study, a data-driven design method for dual-rate
systems in which the sampling period of the process
output is longer than the retention period of the process
input is proposed. In the conventional data-driven design
method using VRFT for such dual-rate systems, a
pr-filter is designed in the frequency domain to convert
the data-driven objective function into a model-based
objective function. In the proposed method, the pre-filter
is designed in the time domain using FIR filter. Numerical
examples compare not only single-rate and dual-rate design
methods, but also time-domain and frequency-domain
design methods. The numerical results show that the
proposed time-domain dual-rate design method outperforms
both the frequency-domain dual-rate method and the
time-domain single-rate method.
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Appendix

Coefficients of FIR filter

From equation (17),

Υ−1
0 (z)[υ0(k)] =

{
1 (k = 0)
0 (others) . (39)

Therefore, equation (17) in the time domain is described as
follows:

Υν = δ, (40)

where

Υ =


υ⊤
0 (0) 01,l 01,l . . . 01,l

υ⊤
0 (1) υ⊤

0 (0) 01,l 01,l

...
...

. . . . . .
...

υ⊤
0 (Nυ − 2) υ⊤

0 (Nυ − 3) . . . υ⊤
0 (0) 01,l

υ⊤
0 (Nυ − 1) υ⊤

0 (Nυ − 2) . . . υ⊤
0 (1) υ⊤

0 (0)

 (41)

ν = [ν⊤
0 ν⊤

1 . . . ν⊤
Nυ−1]

⊤ (42)
δ = [1 01,Nυ−1]

⊤, (43)

where 0i,j is an i× j zero matrix, ν = Υ−1δ is valid under
the condition that the first element of υ⊤

0 (0) is not 0.


