Updated deep long short-term memory with Namib beetle Henry optimisation for sentiment-based stock market prediction
by Nital Adikane; V. Nirmalrani
International Journal of Intelligent Information and Database Systems (IJIIDS), Vol. 16, No. 3, 2024

Abstract: Stock price prediction is a challenging and promising area of research due to the volatile nature of stock markets influenced by factors like investor sentiment and market rumours. Developing accurate prediction models is difficult, given the complexity of stock data. Long short-term memory (LSTM) models have proven effective in uncovering hidden patterns, enabling precise predictions. Therefore, in this research work, an innovative approach called updated deep LSTM (UDLSTM) combined with Namib beetle Henry optimisation (BH-UDLSTM) is proposed and applied to historical stock market and sentiment analysis data. The UDLSTM model enhances prediction performance, offering stability during training and increased data accuracy. By incorporating Namib beetle and Henry gas algorithms, BH-UDLSTM further improves prediction accuracy by striking a balance between exploration and exploitation. The evaluation against existing methods demonstrates that the proposed approach achieves a higher accuracy rate (92.45%) in stock price prediction compared to state-of-the-art techniques.

Online publication date: Tue, 02-Apr-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Information and Database Systems (IJIIDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com