FESSARec: explaining course recommendations using fuzzy expert system and self-attention Online publication date: Fri, 05-Apr-2024
by Mehbooba P. Shareef; Babita Roslind; Jimson Mathew
International Journal of Data Analysis Techniques and Strategies (IJDATS), Vol. 16, No. 2, 2024
Abstract: Recommendations generated by a model become more convincing when the system is capable of explaining the rationale behind the recommendations with respect to various decision parameters involved. A recommendation system which uses fuzzy expert system and self attention (FESSARec) to explain the recommendations is proposed here. The self-attention module extracts features of learners and courses and generates attention weights which will be used to explain the recommendations. The fuzzy expert system extracts relevant rules from the additional domain knowledge available in the datasets. As a result of this hybrid approach, FESSARec outperforms the recent architectures with which it is compared and obtains a very small root mean square error (RMSE) score of 0.65. FESSARec is also capable of producing top-N recommendations with a very high NDCG of 0.89 and HR of 0.72. It outperforms the best e-commerce baseline by 8% and the educational baseline by 16% of lower error rates.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Analysis Techniques and Strategies (IJDATS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com