Machine learning for optimisation of flow-rack AS/RS performances
by Zakarya Amara; Latefa Ghomri; Ali Rimouche
International Journal of Industrial and Systems Engineering (IJISE), Vol. 46, No. 3, 2024

Abstract: In this paper, we are interested in flow-rack automated storage/ retrieval systems (AS/RS), which are compact AS/RS. For this configuration of AS/RS we propose a new storage method based on machine learning (ML), i.e., ML method that assigns to each incoming load a position in the rack, in such a way, that the retrieval time of this same load will be optimal. In other words, we tidy out the loads inside the rack, In order to facilitate access to each type of loads. Consequently, the total (average) retrieval time in the system is minimised. The choice of ML is mainly due to the fact that the output, which is the minimisation of the average retrieval time, cannot be expressed as a function of the input, which is the choice of the most appropriate cell, for the storage of each incoming load. We compared the proposed model results with other basic storage methods. The obtained results were very satisfactory.

Online publication date: Fri, 12-Apr-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com