New approach for online parameter identification for non-holonomic mobile robots Online publication date: Tue, 16-Apr-2024
by Jean Marie Lauhic Ndong Mezui; Dieudonné Ekang; Donatien Nganga-Kouya; Maarouf Saad; Aime Francis Okou
International Journal of Modelling, Identification and Control (IJMIC), Vol. 44, No. 3, 2024
Abstract: The dynamic models that represent robotic systems greatly condition the strategies used for the design of their control systems. The accuracy of the model parameter values can have a significant impact on the closed-loop system performance. This paper proposes an innovative method for the online parameter identification (IOPI) of a non-holonomic mobile robot. The proposed method enables to find the inertia accurately, mass and friction parameters in the robot's model and it does not require the drive wheel input torques to be sufficiently rich signals. The identification algorithm is based on the resolution of a system of linearly independent equations. The number of equations is equal to the number of unknown parameters to be estimated. The simulation results show that with the proposed method, the estimated parameters quickly converge to the real parameters of the non-holonomic mobile robot, contrary to the recursive least squares (RLS) method.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com