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Abstract: Artificial intelligence (AI) is becoming a strategic asset for 
businesses across all sectors. While most large companies have taken their first 
steps towards AI adoption, the success has remained strikingly limited. The 
current underdeveloped understanding of the critical success factors (CSFs) is 
argued to be one of the reasons for failing AI adoption. This study applies a 
mixed-methods approach, in which a broad information systems (IS) literature 
is systematically reviewed to identify CSFs relevant to AI adoption, including 
management support, business casing, problem orientation, data quality, data 
governance, cyber security and regulations. Next, an analytic hierarchy process 
(AHP) survey is combined with expert interviews to empirically rank and 
refine the identified CSFs across a multi-stage AI adoption model. The findings 
contribute to the scholarly discourse on CSFs relevant to AI adoption and help 
firms sharpen their focus and leverage their resources efficiently towards a 
more effective adoption of AI. 

Keywords: artificial intelligence; critical success factors; CSFs; systematic 
literature review; SLR; analytic hierarchy process; AHP; expert interview. 
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Bakhshi, N. (2024) ‘Exploration and prioritisation of critical success factors in 
adoption of artificial intelligence: a mixed-methods study’, Int. J. Business 
Information Systems, Vol. 45, No. 4, pp.429–453. 
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AI-driven solutions with a strong focus on ‘enabling technologies’ such as 
artificial intelligence, machine learning, IoT, intelligent self-learning systems. 
As an experienced transition manager, he focuses on organisational change and 
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1 Introduction 

Marked by increasing investments in artificial intelligence (AI) – driven initiatives and 
use-cases across different sectors, AI is maturing unprecedentedly both within and 
outside the tech domain (Borges et al., 2021; Bughin et al., 2017b). Nevertheless, the rate 
of sustainable adoption of AI-driven solutions has remained remarkably low (Fountaine 
et al., 2019; Hradecky et al., 2022). First, AI systems are becoming more complicated and 
less foreseeable (Zuiderwijk et al., 2021). Second, there are still many challenges 
regarding the performance of AI and expert systems (Davenport and Bean, 2019). Third, 
despite heavy investments, organisations often face a lot of challenges in adopting  
AI-based solutions for reasons including the scarceness of specialists in the AI field, the 
inadequacy of technological infrastructure, lack of organisational flexibility towards 
internal and external changes, intolerance of ambiguity, to name a few (Pillai and 
Sivathanu, 2020). Therefore, it is argued that notwithstanding the growing investments by 
more than 50% in 2018, our understanding of the AI-specific requirements or readiness 
factors to ensure successful organisational implementation is limited (Pumplun et al., 
2019). More specifically, the critical success factors (CSFs) which affect AI adoption are 
not always apparent (Duan et al., 2019). 

CSFs are studied within a wide range of domains, including enterprise resource 
planning (ERP) (Awa and Ojiabo, 2016); electronic health records (Standing and Cripps, 
2015; Nikayin et al., 2014), customer relationship management (CRM) (Meyliana et al., 
2016), training course projects (Fu et al., 2015), supply chain collaboration (Solaimani  
et al., 2015a; Solaimani and van der Veen, 2021), theses and dissertation repositories 
(Rasuli et al., 2018, 2019), smart homes (Solaimani et al., 2013, 2015b). In the context of 
AI adoption, CSFs can be defined as factors which are critical to achieving the desired 
outcomes, such as realisation, avoidance, tracking, or evaluation of an appropriate AI 
adoption level (Kachru, 2005). The adoption of any technology happens over time 
(Vargas and Comuzzi, 2020) and the value creation process is often a block box (Zand  
et al., 2015). In the case of AI, it starts with exploring the potential of the AI project and 
its value for the business (Niederman, 2021) and moves towards small-scale 
implementation with proof-of-concept and local deployment, and ultimately, full-fledge 
rollout often scaled across multiple business units (Hameed et al., 2012; Müller et al., 
2018). 

Despite several scholarly calls for more attention to critical factors contributing to 
success or failure of AI technologies, (e.g., Duan et al., 2019; Mehri, 2022; Mir et al., 
2020; Yoon and Lee, 2018), a limited number of studies have focused on identifying and 
validating CSFs, in particular, factors relevant to AI adoption. Building on the existing 
literature on the adoption of AI, this study aims to: 
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1 identify the CSFs in this domain 

2 empirically explore the priorities of the CSFs across the three stages of technology 
adoption, namely, exploration, implementation, and scaling. 

These three stages are broadly recognised across numerous studies on technology 
adoption (e.g., Ng, 2020; Bose and Luo, 2011; Brock and Von Wangenheim, 2019). As 
such, this study contributes to the AI community by helping both scholars and 
practitioners focus on the most relevant values, capabilities, processes, and infrastructure 
while remaining heedful of the context-specific factors impacting AI adoption. The 
identified and empirically prioritised CSFs help firms sharpen their focus and effectively 
channel their effort in avoiding barriers and challenges across various stages of AI 
adoption. 

The remainder of this study is structured as follows. The following section discusses 
the mixed-method approach applied in this study and provides a detailed account of how 
in this study, the literature on AI adoption is systematically reviewed to elicit CSFs and 
how the analytic hierarchy process (AHP) and expert interviews are triangulated to rank 
and refine the collected CSFs across various stages of adoption. Section 3 presents a vast 
array of CSFs relevant to AI adoption and provides empirically ranked CSFs across three 
phases of adoption. The study concludes by discussing the findings, the theoretical and 
practical implications, and the limitations and proposes several fruitful areas for future 
research. 

2 Material and methods 

This study adopts a mixed-methods approach to meet the multi-step objectives of 
collecting, prioritising and contextualising CSFs. The mixed-methods approach is an 
umbrella term for research combining multiple paradigms, such as scientific and 
interpretative, or analytical approaches, such as qualitative and quantitative (Harrington, 
2014). In a mixed-methods study, one method’s results inform the development of 
another (Christensen, 2022). In this way, the researchers are enabled to ‘obtain 
convergence or corroboration of findings, to eliminate or minimise key plausible 
alternative explanations for conclusions drawn from the research data, and to elucidate 
the divergent aspects of a phenomenon’ [Johnson and Onwuegbuzie, (2004), p.299]. This 
study uses a combination of systematic literature review (SLR), AHP, and expert 
interviews, elaborated in the following sections. 

2.1 Identification of CSFs: SLR 

As a first step, this study employed a SLR to draw a long list of CSFs on AI adoption 
from relatively dispersed academic and grey literature. Fink (2019, p.3) defines SLR as ‘a 
systematic, explicit, and reproducible method for identifying, evaluating, and 
synthesising the existing body of completed and recorded work produced by researchers, 
scholars, and practitioners’. The data collection and review process is structured 
according to the three widely accepted steps of Tranfield et al. (2003), i.e., planning, 
conducting, and reporting the review, to ensure internal validity (Bodhi et al., 2021) (see 
Table 1 and Figure 1 for an overview of the SLR steps and process taken in this study). 
The leading search engines, including Scopus, Google Scholar and EBSCO, are used to 
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collect relevant publications. Besides, the top-tier business and IS/IT publishers’ 
repositories, including the MIT Sloan Management Review, Information Systems 
Research, MIS Quarterly, Journal of Management Information Systems, and Journal of 
the Association of Information Systems, are investigated. Given the subject’s 
contemporary and technical nature, both peer-reviewed journals and conference 
proceedings are considered. 

Figure 1 Data collection and analysis flow (see online version for colours) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keyword search for relevant literature: 
Keywords: [[‘artificial intelligence’ OR ‘machine learning’ OR 

‘cognitive computing’ OR ‘deep learning’ OR ‘neural networks’] AND 
[‘critical success factor*’ OR ‘success factor*’ OR ‘readiness’ OR 

‘adoption’ OR ‘requirement*’]] 
Publication date: Not limited 
Publication language: English 

Research databases 
EBSCO, Scopus, Google 
Scholar, and publishers' 

repository 

Search results 
2,120 papers in 

total

Checking each paper & 
reviewing for relevance 

Keywords search 
to identify & filter 

Inclusion criteria 
Involving keywords, requiring checking 

for relevance: 213 

Exclusion criteria 
Duplicates and inaccessible papers 259 

Irrelevant to the research goals 648 

Irrelevant to the CSFs and 
AI adoption 

143 

First round of review 
Relevant to the BD and BM 

83 

Second round of review 
Final entire sample of papers 

80 

Quality assessment-based 
exclusion 

Exclusion criteria: 
1) Papers were not relevant 

to the fields of CSFs and 
AI adoption 

Quality assessment-based inclusion 
Inclusion criteria: 
1) Papers were relevant to the fields of CSFs and AI adoption 
2) Clear information related to CSFs and AI adoption was found 

Performing snowball process  
Checking all references of papers and 

findings ten relevant papers: 213 
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Table 1 The SLR process and outcome 

Planning 
the review 

Objective: identification of CSFs in the adoption of AI 
Scope: peer-reviewed journal articles and conference proceedings 
Search engine: EBSCO, Scopus, Google Scholar, and publishers’ repository 
Language: English without restrictions regarding the year of publication 

Conducting 
the review 

Search terms [[‘artificial intelligence’ OR ‘machine learning’ OR ‘cognitive 
computing’ OR ‘deep learning’ OR ‘neural networks’] AND [‘critical success 
factor*’ OR ‘success factor*’ OR ‘readiness’ OR ‘adoption’ OR ‘requirement*’]] 
(2120 hits). 
Removing duplicates, not written in English, editorials, studies with no focus on 
AI, non-peer-reviewed scientific publications, and inaccessible articles led to an 
initial sample of 213 articles 
With snowball searching, 223 articles are added 
The 1st round of review of titles and abstracts (83 articles selected for a 2nd 
review round) 
The 2nd round of review: a full paper review (80 CSFs are identified) 

Reporting 
the review 

Structuring the identified CSFs 
Seeking consensus among authors striving for a ‘collectively exhaustive and 
mutually exclusive’ list of CSFs (leading to 32 distinctive CSFs) 

The exclusion criteria were 

1 inaccessible studies, (i.e., the articles where only an abstract was available) 

2 not written in English 

3 editorials 

4 studies with no focus on AI 

5 non-peer-reviewed scientific publications. 

Once the inaccessible articles and duplicates are removed, the remaining articles are 
reviewed in two rounds. The review process is performed by three of the co-authors 
independently. First, titles and abstracts are screened, and the list of references is 
searched for promising new articles, (i.e., snowball searching); second, the entire article 
is reviewed. To structure the process of identifying CSFs, the technology-organisation-
environment (TOE) framework is used, which provides a comprehensive structure to 
capture not only the technical aspects but also the ‘soft’ organisational, managerial, 
cultural, and environmental aspects of technology adoption at the firm level (Tornatzky 
and Fleischer, 1990). The review process resulted in a long list of CSFs across all three 
TOE dimensions; however, there were overlapping factors with slightly different labels 
and nuances. In achieving a set of collectively exhaustive and mutually exclusive CSFs, 
iterative discussions among authors took place. The review process led to a consensus on 
32 distinctive CSFs. 

2.2 Prioritisation of CSFs: AHP 

While the SLR helped identify the CSFs, the prioritisation of the factors across the 
adoption stages could not be extracted from the literature. As discussed in the previous 
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section, CSFs are inherently prioritised between competing factors that might impact 
adoption across various stages. Therefore, it can be considered a multi-criteria  
decision-making (MCDM) problem, where managers seek to evaluate and prioritise 
multiple criteria. MCDM enables determining the best alternative among various choices, 
possibly conflicting or correlated criteria (Sitorus et al., 2019). Generally speaking, there 
are three main types of MCDM, namely, value measurement models, outranking models, 
and reference-level models (Alharthi et al., 2015). In this study, a value measurement 
method, i.e., the AHP is adopted, which is one of the most commonly used MCDM 
methods (Fu et al., 2015; Latha and Suganthi, 2015). In the AHP method, explicit criteria 
are considered in prioritising and selecting alternatives. As such, the degree to which one 
decision option is preferred over another is represented by constructing and comparing 
numerical scores (Saaty, 2012). Value measurement models are widely used for 
prioritising CSFs for technology adoption processes (Salmeron and Herrero, 2005; Zaied 
et al., 2018), and AHP is among one of the most applicable methods among other 
quantitative ranking methods since it allows the researcher to easily measure the level of 
importance of each attribute compared to the others. Direct comparison between factors 
will enable individuals to calibrate the level of importance assigned to each factor 
(Alharthi et al., 2015). 

In this study, the AHP provides a ranking of different criteria using weights obtained 
by pairwise comparison between CSFs (Nagpal et al., 2018). To select the most important 
CSFs as the inputs of the AHP technique, 33 experts from various industries participated. 
The sample size is comparable with similar studies based on AHP, e.g., Czekster et al. 
(2019) with 15 experts with a focus on ERP, and Nazari et al. (2018) with seven experts 
with an emphasis on decision support systems (DSS). Before the experts complete the 
related questionnaires, the primary purpose of the study, the definition of CSFs and the 
reasons for including CSFs at each stage of AI adoption are clearly explained. The 
majority of the respondents are from the finance industry (23%), followed by information 
technology (IT) (23%), retail (13%), energy (13%), and miscellaneous (e.g., pharma, 
telecom, aviation) with 19%. The respondents’ role includes consultants both in 
consultancy firms and technology providers (52%), corporate agents such as solution 
architects, project managers, engineers (30%), and entrepreneurs in AI-driven companies 
(18%). 

To prove the consistency of experts’ opinions, the binomial test is applied to examine 
whether there are significant differences between experts’ opinions. Therefore, the null 
hypothesis is ‘There are no differences between experts’ opinions’. Each expert states 
his/her opinion by selecting (1) as agree and (0) as disagree. The proportion test is 
assumed to equal 0.50, which means 50 per cent of experts are expected to agree on the 
proposed CSFs at each stage. The significance level of 0.05 is considered. Therefore, 
those CSFs with the agreed proportion of expert majority and significance value smaller 
than 0.05 are selected for prioritisation by AHP. For each pairwise comparison, experts 
were asked to rate the relative importance of criteria based on a nine-rank scale varying 
from equally important to extremely important. Also, each respondent’s consistency ratio 
(CR) was calculated to ensure internal consistency (Wang et al., 2017). The results from 
all participants were aggregated to provide the final overall weights for each factor. Next, 
Friedman’s non-parametric test for examining the difference between several related 
(ordinal) samples is used on the respondent’s prioritisation. The participating AI experts 
were approached through the authors’ contacts and the university network. The AHP 
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survey is made accessible online with the BPMSG software (Goepel, 2018), and the 
results are tabulated and analysed in Microsoft Excel. 

2.3 Refinement of CSFs: expert interview 

The ranked CSFs were gathered from a long list of studies within various contexts; 
therefore, each CSF can be susceptible to a broad interpretation. To enhance the 
homogeneity of the selected and ranked CSFs, semi-structured interviews with AI experts 
were conducted (an overview of interview questions is provided in Appendix). The 
duration of the interviews was approximately one hour. All experts who participated in 
this research had at least three years of professional experience. The interviews aimed to 
collect experts’ reflections and refinements of CSFs in the specific context of AI 
adoption. Semi-structured interviews help to open up complementary perspectives on a 
particular topic through the interviewees’ mode of experience (Flick et al., 2004), and it 
is considered to be an effective approach in the mixed-methods studies where qualitative 
clarification of other methods’ (often quantitative) output is needed (DeJonckheere and 
Vaughn, 2019). 

In this section, the experts who participated in the previous steps were invited for an 
interview, from which 12 accepted the invitation. Although the sample size is not too 
extensive (more about the sample size in the discussion on limitations at the end of the 
article), it is not uncommon in the mixed-methods context (e.g., Kumar et al., 2021). The 
experts were requested to share their experiences and opinions regarding the ranked 
CSFs. Three of the authors of this study conducted the interviews, with one being the 
main interviewer, the second as the critical observer with complementary questions, and 
the third as a timekeeper who focused on overall structure and scope. All the interviews 
were transcribed (a total of 13 hours and 39 minutes of interview material). An AI-driven 
natural language processing (NLP) tool, Otter.ai, was used to transcribe the interviews 
(complemented with manual post-editing), and Quirkos 2.0 was used for coding the 
interviews. The results were tabulated in a Microsoft Excel database. Then, thematic 
coding of transcripts is applied to systematically extract patterns from the interviews 
(Rice and Ezzy, 1999). As such, the ranked CSFs were used as the ‘master code’, and the 
experts’ refinements of the CSFs were added as nuance or subsets to each CSF. Once all 
the nuances were collected, the authors’ started to identify the overlapping themes or 
patterns. 

3 Results 

The results of the three methods applied in this study are elaborated on next. 

3.1 Identification of CSFs based on SLR 

Based on SLR, a total of 32 CSFs from 70 sources are identified. The earliest publication 
on the CSFs in AI adoption dates back to 2015; however, there has been increasing 
attention ever since (see Figure 2). See Table 2 for a more detailed overview of the 
systematically reviewed publications. 
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Table 2 Detailed overview of CSFs based on SLR 
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Table 2 Detailed overview of CSFs based on SLR (continued) 

  
 

C
SF

s i
n 

AI
 

D
es

cr
ip

tio
n 

Organisation 

Structure 

D
at

a 
go

ve
rn

an
ce

 
• 

Is
su

in
g 

op
en

 d
at

a 
po

lic
ie

s (
Y

er
lik

ay
a 

an
d 

Er
zu

ru
m

lu
, 2

02
1)

. 
• 

Ro
lli

ng
-o

ut
 p

la
nn

in
g 

on
 d

at
a 

co
nn

ec
tiv

ity
 a

nd
 in

ve
st

m
en

ts 
in

 c
om

pu
tin

g 
(Y

er
lik

ay
a 

an
d 

Er
zu

ru
m

lu
, 2

02
1)

. 
• 

Co
m

pa
tib

ili
ty

 b
et

w
ee

n 
da

ta
 fl

ow
 a

nd
 lo

gi
c 

an
d 

th
e 

str
uc

tu
re

 o
f t

he
 o

rg
an

isa
tio

n 
(J

an
ss

en
 e

t a
l.,

 2
02

0)
. 

• 
D

ev
el

op
in

g,
 p

la
nn

in
g 

an
d 

co
nt

ro
lli

ng
 a

pp
ro

ac
he

s t
ow

ar
d 

da
ta

 m
an

ag
em

en
t (

Ja
ns

se
n 

et
 a

l.,
 2

02
0)

. 
• 

D
et

ec
tin

g 
ch

an
gi

ng
 p

at
te

rn
s o

f d
at

a 
an

d 
al

go
rit

hm
s (

Ja
ns

se
n 

et
 a

l.,
 2

02
0)

. 
• 

Co
lle

ct
in

g 
da

ta
 a

t t
he

 so
ur

ce
 a

nd
 e

ns
ur

in
g 

th
e 

co
rre

ct
ne

ss
, v

al
id

ity
 a

nd
 u

se
fu

ln
es

s o
f d

at
a 

(J
an

ss
en

 e
t a

l.,
 2

02
0)

. 
• 

D
ev

el
op

in
g 

se
lf-

or
ga

ni
sin

g 
an

d 
in

te
r-o

rg
an

isa
tio

na
l n

et
w

or
ks

 (W
an

g 
an

d 
Si

au
, 2

01
8)

. 
Ex

pe
rim

en
ta

tio
n 

an
d 

ite
ra

tiv
e 

de
ve

lo
pm

en
t 

• 
G

ai
ni

ng
 e

xp
er

ie
nc

e 
th

ro
ug

h 
re

le
nt

le
ss

 it
er

at
io

ns
 a

nd
 ra

pi
d 

pr
ot

ot
yp

in
g 

(L
ee

 e
t a

l.,
 2

01
9;

 M
øl

le
r e

t a
l.,

 2
01

9;
 N

g,
 2

01
8;

 K
ol

bj
ør

ns
ru

d 
et

 a
l.,

 2
01

7)
. 

• 
V

al
id

at
ed

 le
ar

ni
ng

 (L
ee

 e
t a

l.,
 2

01
9;

 M
øl

le
r e

t a
l.,

 2
01

9;
 N

g,
 2

01
8;

 K
ol

bj
ør

ns
ru

d 
et

 a
l.,

 2
01

7)
. 

• 
Q

ui
ck

 e
xa

m
in

at
io

ns
 b

y 
A

I a
lg

or
ith

m
s (

M
ay

o 
et

 a
l.,

 2
02

0)
. 

• 
A

dd
re

ss
in

g 
ch

al
le

ng
es

 a
ss

oc
ia

te
d 

w
ith

 A
I d

ev
el

op
m

en
t (

A
lsh

ei
ba

ni
 e

t a
l.,

 2
01

9)
. 

• 
Es

ta
bl

ish
in

g 
an

 A
I-d

riv
en

 e
co

sy
ste

m
 a

s a
n 

ite
ra

tiv
e 

pr
oc

es
s w

he
re

 sc
en

ar
io

s a
re

 te
ste

d,
 a

nd
 th

e b
es

t o
ne

s a
re

 im
pl

em
en

te
d 

(Y
er

lik
ay

a 
an

d 
Er

zu
ru

m
lu

, 2
02

1)
. 

Strategy 

Bu
ild

-o
r-b

uy
 d

ec
isi

on
 

• 
A

 d
ec

isi
on

 is
 re

qu
ire

d 
on

 w
he

th
er

 to
 b

ui
ld

 A
I t

ec
hn

ol
og

y 
an

d 
ca

pa
bi

lit
ie

s i
nt

er
na

lly
 o

r s
ou

rc
e 

it 
ou

t t
o 

ex
te

rn
al

 p
ar

tn
er

s a
nd

 v
en

do
rs

 
(B

ug
hi

n 
et

 a
l.,

 2
01

7b
; R

in
ge

l e
t a

l.,
 2

01
9;

 S
ki

lto
n 

an
d 

H
ov

se
pi

an
, 2

01
8)

. 

• 
A

na
ly

sin
g 

th
e 

tra
de

-o
ff 

be
tw

ee
n 

be
in

g 
in

de
pe

nd
en

t o
f e

xt
er

na
l a

ct
or

s w
ith

 fu
ll 

(te
ch

ni
ca

l) 
fle

xi
bi

lit
y 

at
 th

e 
ex

pe
ns

e 
of

 (v
ar

ia
bl

e)
 

sc
al

ab
ili

ty
, c

os
t a

nd
 e

as
e 

of
 u

se
 (L

ee
 a

nd
 S

hi
n,

 2
02

0;
 H

os
an

ag
ar

 a
nd

 S
ax

en
a,

 2
01

7)
. 

Re
so

ur
ce

 a
llo

ca
tio

n 
• 

D
ed

ic
at

in
g 

A
I a

na
ly

tic
s b

ud
ge

t w
ith

 a
 lo

ng
-te

rm
 in

ve
st

m
en

t h
or

iz
on

 (B
iss

on
 e

t a
l.,

 2
01

8;
 O

’M
ah

on
y 

et
 a

l.,
 2

01
7;

 P
um

pl
un

 e
t a

l.,
 

20
19

). 
• 

Ev
al

ua
tin

g 
fin

an
ci

al
 ri

sk
s r

eg
ar

di
ng

 th
e 

cu
rre

nt
 c

on
te

xt
 o

f c
ha

lle
ng

es
 (M

an
ta

, 2
02

0)
. 

Le
ve

ra
ge

 e
xi

sti
ng

 
co

m
pe

te
nc

ie
s 

• 
En

co
ur

ag
in

g 
fir

m
s t

o 
sta

rt 
fro

m
 th

ei
r s

tro
ng

ho
ld

s w
ith

 a
 c

le
ar

 li
nk

 to
 th

e 
fir

m
’s

 st
ra

te
gy

 a
nd

 v
isi

on
, i

nt
eg

ra
tin

g 
in

to
 th

ei
r e

xi
sti

ng
 

op
er

at
io

n,
 a

nd
 le

ve
ra

gi
ng

 th
e 

cu
rre

nt
 k

no
w

le
dg

e 
ba

se
 (A

lsh
ei

ba
ni

 e
t a

l.,
 2

01
9;

 B
ug

hi
n 

et
 a

l.,
 2

01
7a

, 2
01

7b
; M

øl
le

r e
t a

l.,
 2

01
9;

 
Pa

sc
he

n 
et

 a
l.,

 2
02

0a
, 2

02
0b

). 
Bu

sin
es

s c
as

e 
or

ie
nt

at
io

n 
• 

Fo
llo

w
in

g 
a 

cl
ea

r b
us

in
es

s c
as

e 
(B

iss
on

 e
t a

l.,
 2

01
8;

 C
an

ho
to

 a
nd

 C
le

ar
, 2

02
0;

 D
es

ou
za

 e
t a

l.,
 2

02
0;

 A
lsh

ei
ba

ni
 e

t a
l.,

 2
01

9;
 

A
lsh

ei
ba

ni
 e

t a
l.,

 2
02

0a
). 

• 
In

iti
at

in
g 

w
ith

 sm
al

l-s
ca

le
 p

ro
bl

em
s (

Bi
ss

on
 e

t a
l.,

 2
01

8;
 C

an
ho

to
 a

nd
 C

le
ar

, 2
02

0;
 D

es
ou

za
 e

t a
l.,

 2
02

0)
. 

• 
Ta

ck
lin

g 
la

rg
e-

sc
al

e 
bu

sin
es

s c
ha

lle
ng

es
 (B

iss
on

 e
t a

l.,
 2

01
8;

 C
an

ho
to

 an
d 

Cl
ea

r, 
20

20
; D

es
ou

za
 e

t a
l.,

 2
02

0)
. 

• 
A

lig
ni

ng
 A

I t
ra

ns
fo

rm
at

io
n 

w
ith

 e
xi

sti
ng

 st
ra

te
gi

es
 (A

lsh
ei

ba
ni

 e
t a

l.,
 2

01
9;

 A
lsh

ei
ba

ni
 e

t a
l.,

 2
02

0a
, 2

02
0b

). 



   

 

   

   
 

   

   

 

   

    Exploration and prioritisation of critical success factors 439    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 Detailed overview of CSFs based on SLR (continued) 
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Table 2 Detailed overview of CSFs based on SLR (continued) 
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Figure 2 The trend of publications on ‘CSFS in AI adoption’ across various sources 

 

3.2 Ranking of the CSFs with AHP 

To select the CSFs across the three levels of adoption (i.e., exploration, implementation, 
scaling), the binomial test was applied, and experts were asked to select the most 
important CSFs in each phase by indicating their opinions (1) as ‘agree’ and (2) as 
‘disagree’. Only the CSFs selected by most experts at a 95% confidence level were 
considered for the ranking process. Accordingly, seven CSFs in the exploration phase, 
four in the implementation phase, and five in the scaling stage were chosen (see Table 3). 

The AHP-based survey is filled out by 14 AI professionals from Europe, Africa, and 
Asia. A 7.2% of respondents have < 3 years, 42.8% between 3 to 7 years, and 50% > 7 
years of experience in AI projects. The relative priority of each criterion is calculated 
through pairwise comparisons (the aggregated pairwise comparison matrix, CR, rank and 
weight of CSFs are presented in Table 3). It became clear that ‘business case orientation’ 
and ‘executive management support’ are the most important CSFs in the exploration 
phase, ‘problem orientation’ and ‘data quality’ are the most important CSFs in the 
implementation phase, and ‘cybersecurity’ and ‘algorithm accuracy’ are the most 
important ones in scaling stage. The CR is also presented as the respondents’ internal 
consistency, which should be less than 0.1 for the judgments to be considered reliable 
(Saaty, 2012). The Friedman test indicates that the differences between the mean ranks of 
CSFs assigned by experts in the AHP section are significant (see Table 4). 
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Table 3 Aggregated pairwise matrices and prioritised CSFs in the AI adoption phases 
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Table 4 Friedman test results 

Phase df Chi2 Sig. Mean rank 
Exploration 6 17.045 0.009 Business case orientation: 2.50 

Executive management support: 3.07 
Experiment and iterative development: 3.89 

Problem orientation: 4.11 
Resource allocation: 4.43 

Data quality: 4.61 
Entrepreneurial culture: 5.39 

Implementation 3 8.188 0.042 Problem orientation: 1.82 
Data quality: 2.36 

Algorithm accuracy: 2.68 
Technology and system architecture: 3.14 

Scaling 4 10.719 0.030 Cybersecurity: 2.32 
Algorithm accuracy: 2.64 

Performance measurement: 2.96 
Data governance: 3.93 

Anticipatory regulations: 4.14 

3.3 Refinement of the CSFs in the context of adoption based on experts’ 
interviews 

The participants in the expert interviews were from different sectors, including retail, 
research, financial services, healthcare, food and beverage, all active as experts and 
senior advisors in AI for more than five years. Based on the experts’ views, the ranked 
CSFs are refined. As a result, different actions and interpretations of each CSF seem to be 
at play. For instance, ‘problem orientation’ and ‘data quality’ are two CSFs in both the 
exploration and implementation phases. In the exploration phase, problem orientation is 
related to understanding users’ and customers’ needs, while in the implementation phase, 
it refers to identifying problems in deploying AI solutions. For instance, one of the 
interviewees stated, “AI is a mean to an end, not an end in itself. The objective is solving 
an issue – for example, saving money, increasing the top line or integrating more 
efficiency. We never start our exploration from the technology itself. We start from what 
is the problem that we are trying to solve”. While another interviewee emphasised that 
‘while building our AI-enabled solution, our focus remains on ‘deployability’; how else 
can we truly address our client’s problems, whether that is an intelligent detection system 
or autonomous decision-making?’ Data quality in the exploration phase is mainly about 
data cleaning and validity, while in the implementation phase, quality is primarily about 
data interpretability. For instance, one interviewee stated, “the starting point, even for 
organisations that are in an exploration phase, is that they already have business 
intelligence [BI] or analytics departments where the quality, quantity and availability [of 
data] is managed. In particular, data quality is critical, and it should represent a targeted 
population”. Another interviewee underlines the importance of data quality within the 
implementation phase and states, “when you shake a tree hard enough, some fruit will fall 
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off. But that says nothing about the quality of your yield. Data is useful only when we 
can turn it into insights that ultimately fulfil customers’ need”. See Figure 3 for the 
ranked and refined CSFs across the three stages of AI adoption. 

Figure 3 An overview of refinements and nuances of CSFs from a TOE perspectives based on 
expert interviews (a full overview of quotes is available upon request) 
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4 Discussion and conclusions 

Although the number of firms and industries experimenting with AI solutions is growing, 
AI adoption has been limited (Canhoto and Clear, 2020). There are repeated calls in the 
literature for more research on CSFs that accelerate or impede the adoption of AI (Herath 
and Mittal, 2022). CSFs are perceived as a simple and intuitive way to condense the 
complexities of modern management into a series of priorities (Chen et al., 2021a, 
2021b). Following a mixed-methods approach, this study reviews a relatively large 
collection of IS publications based on which a vast array of technological, organisational 
and environmental CSFs is extracted. The CSFs are then shortened, ranked, and refined 
across the three phases of AI adoption, i.e., exploration, implementation, and scaling. 

The empirical findings of this study hint that in the exploration phase, the 
organisational factors, such as ‘business case orientation’, ‘executive management 
support’, and ‘promotion of entrepreneurial culture and experimentation’, are the most 
relevant CSFs. This finding corroborates earlier studies on AI adoption, where the need 
for ‘soft infrastructure’ as the departure point is highlighted (Ammanath et al., 2020; Ng, 
2020). It is noteworthy that cultural change is often less straightforward than setting the 
technology right because firms’ contextual peculiarities and constraints need to be 
considered, leading to a unique change management journey (Bughin et al., 2017b). In 
stark contrast, within the implementation phase, the technological factors become more 
prominent, including ‘pursuing a problem-oriented approach’, ‘safeguarding quality of 
data’, ‘ensuring algorithms’ accuracy’, and ‘the adoption of technology and system 
architecture’. Although the role of technology and its relevance throughout  
the AI adoption process is not unanimously specified in the existing literature, it is 
considered a critical factor with an impact on adoption (Møller et al., 2019; Lee et al., 
2019; Huang and Rust, 2018; Brock and Von Wangenheim, 2019). In the scaling  
phase, ‘cybersecurity’, ‘algorithm accuracy’, ‘performance measurement’, and ‘data 
governance’ appear to deserve a higher priority. Attention to cybersecurity, data 
governance, and focus on privacy have been emphasised by earlier studies (e.g., 
Alsheibani et al., 2018; Delmolino and Whitehouse, 2018; Siau and Wang, 2018; Singh 
et al., 2022). However, in this study, it became clear that the beforementioned factors 
became critical mainly in the last adoption phase. 

4.1 Theoretical and managerial implications 

Theoretically speaking, this study can be positioned within a growing community of 
scholars that is looking into the role of CSFs and AI, (e.g., Alhashmi et al., 2019; 
Alsheibani et al., 2018, 2019; Chen et al., 2021a, 2021b; Desouza et al., 2020; Dora et al., 
2021; Mir et al., 2020; Pillai and Sivathanu, 2020) and provides the community with a 
comprehensive overview of CSFs relevant to AI adoption, as well as the variability of the 
CSFs’ relevance across the adoption process. From a practical viewpoint, this study helps 
scholars and practitioners focus on a specific set of CSFs, enabling firms to develop more 
comprehensive policies, mobilise resources more efficiently, and build the capabilities 
needed for sustainable AI adoption more effectively. 
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4.2 Research limitations 

As with any empirical study, the findings of this study must be viewed in light of some 
limitations. First, this study is the first attempt to triangulate various methods to provide a 
comprehensive view of CSFs; however, for a longitudinal understanding of firms’ 
adoption process, qualitative case studies are more suitable. A more generic limitation is 
the sample size of the AHP-based survey and expert interviews. While the sample sizes 
correspond with the earlier studies (see Sections 2.2 and 2.3 for a more detailed 
discussion on sample size), a larger sample size can enhance the external validity of the 
finding. Therefore, the findings should be considered as a starting point for future studies 
as it explicates the areas that need further exploration. 

4.3 Future research 

Future research can evaluate the firms’ maturity concerning the CSFs proposed in this 
study and qualitatively or quantitatively study how different levels of maturity impacts 
firms’ performance, which, in turn, can trigger new series of research on how the 
transformation process can be managed to steer the firm towards a higher maturity level, 
(e.g., Ge et al., 2020), or exploring the adoption of specific AI applications, such as  
AI-driven forecasting, rather than AI as a generic technology (e.g., Ahmadi and 
Solaimani, 2021). Also, future studies can statistically examine the relationships between 
CSFs of AI adoption to determine the impact of factors on AI adoption. Furthermore, 
future studies can focus on developing and validating conceptual models with qualitative 
and quantitative methods such as interpretive structural modelling (ISM), path analysis 
and structural equation modelling (SEM) (e.g., Solaimani and Swaak, 2022) to categorise 
the variables and identify the most important factors while considering the correlation 
and interaction between CSFs. 
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Appendix 

Table A1 An overview of the semi-structured interview questions 

Interview 
opening 

What is your current role and organisation? 
What is your background, and what is your experience with AI technologies? 

Artificial 
intelligence 

What is the value of AI in your sector/area of expertise? Do you consider it as 
transformational? Why/why not? 
What is your view on the current adoption of AI in your industry/domain of 
expertise? 

Phases of AI 
implementation 

How relevant are the three indicated three phases of adoption? Are there any 
changes needed? 
How would you describe the phases of AI implementation in your 
industry/domain? 
What have you learned about each phase from your experience with AI 
projects? 

CSFs for 
implementing 
AI 

What are the CSFs for implementing AI in your industry/domain? 
[providing the interviewee with insights on CSFs derived from the literature 
review] 
Does this study capture relevant CSFs, and do they apply to your 
industry/domain? Are there any CSFs missing? 
Which CSFs would you rank as most important during each stage of the AI 
implementation and why? 
How do the discussed CSFs differ from other technologies (ERP, cloud 
computing, CRM), etc.)? 
Are the different clusters of success factors that could lead to a successful 
outcome? 

Interview 
closing 

Do you have any final thoughts about how to implement AI that we may have 
overlooked successfully? 

 


