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task. In this paper, we formulate a joint blocklength allocation and power
control optimisation problem to maximise the sum-rate performance with the
short data packet in an uplink URLLC communication system. To alleviate
this non-convex optimisation problem under the subcarrier power, blocklength
and rate constraints, we firstly transfer it into a multi-agent reinforcement
learning (RL) problem, in which each subcarrier works as the agent to decide
its own power intelligently. Then a distributed blocklength allocation and
power control scheme is proposed based on deep Q-network (DQN). To
improve the rate performance in the dynamic communication environment,
we design the segmented reward function depending on the communication
rate and blocklength under different conditions, and adopt the experience
replay strategy to avoid the dependency of training data. Finally, the
simulation results show that the proposed scheme achieve the effectiveness
and convergence under different settings compared to benchmark schemes.

Keywords: ultra-reliable low-latency communication; URLLC; blocklength
allocation; power control; deep reinforcement learning.
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1 Introduction

With the rapid increasing of the global data traffic per year, the sixth generation
(6G) mobile communication system need to support diverse applications and devices,
e.g., internet of things (IoT), intelligent transportation, virtual reality (VR) and smart
city (6G FLAGSHIP, 2019; Sulyman et al., 2017; Park and Bennis, 2018). It is
forecasted that the number of the mobile devices reach more than ten billions in 2022
(Cisco, 2019), in which the number of mobile devices is five times of number of
fixed devices. To meet the demands of massive connections and differentiated devices,
the forthcoming fifth generation (5G) communication system takes the scenarios, key
technologies into consideration to meet the extreme key performance indicators for
each application scenario (3GPP TR38.913, 2017). There exist three major scenarios
in the fifth generation system, i.e., enhanced mobile broadband (eMBB) service aims
to guarantee the higher data rate, massive machine-type communication (mMTC)
service aspires to increase the number of connections, and ultra-reliable low-latency
communication (URLLC) service ensures the requirements of high reliability and
low latency. Considering the time-sensitive applications in the 6G/5G network, e.g.,
vehicle-to-vehicle, industrial automation, augmented reality and VR, it is significant to
design the solutions to guarantee the latency and reliability performance by applying
various techniques (Yin et al., 2021). Recently, the third generation partnership project
(3GPP) pointed out that URLLC system will provide 99.999% reliability and 1 ms
latency for the future applications (Li et al., 2019). These metrics represent distinct key
performance indicators compared to previous wireless communication systems. Table 1
presents the practical requirements of several typical URLLC applications in terms of
latency and reliability.

Table 1 Practical requirements in URLLC applications

Application Latency (ms) Reliability (%)

Smart grid 3∼20 99.999
Augmented reality 0.4∼2 99.999
V2V 5 99.999
Professional audio 2 99.99999
Industrial automation 0.25∼10 99.9999999

Source: Sutton et al. (2019)

3GPP developed a new radio (NR) air interface to achieve the requirements of future
5G/6G networks (Anutusha et al., 2020) and designed the minislot to reduce the
latency (3GPP TS38.211, 2018), in which the new slot structures are suitable for the
short-packet communications. Unlike that, the current wireless communication systems
adopt the long-packet transmissions, and the achievable rate is normally characterised
by Shannon’s capacity (Eggers et al., 2019). However, due to the demanding latency
requirement in critical applications, the size of transmitted URLLC packets is small.
Thus, the communication is no longer reliable and the decoding error probability is
no longer negligible. As a result, Shannon’s capacity is not applicable to characterise
the maximum achievable rate of short URLLC packets. Otherwise, the performance
of the latency and reliability will be underestimated (Giampaolo et al., 2023; Pase
et al., 2022). This necessitates the achievable rate characterisation and relaying protocol
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design under the finite blocklength (FBL) regime (Polyanskiy et al., 2010; Liu et al.,
2021). Thus, the finite blocklength theorem has been proposed in Polyanskiy et al.
(2010) to obtain tight bounds on coding rate under short-packet transmission. Based
on this theorem, the existing literature has carried out massive advanced works in
URLLC systems (Hu et al., 2020; He et al., 2021). In Ramin et al. (2021), the
authors explored the average achievable rate and error probability of systems assisted
by reconfigurable intelligent surfaces in finite blocklength regime. For short packet
communication between sources and robots used in automated factories, Jiang et al.
(2021) considered different interference mitigation methods for full-duplex systems to
optimise the latency and ehance the coverage and reliability. Ren et al. (2019) optimised
the blocklength and power allocation jointly to minimise the decoding error probability.
Therefore, to meet the performance requirements of URLLC systems with the finite
blocklength, it is a challenging problem to allocate the system resources efficiently due
to the limited blocklength resource.

To solve the above problems, the existing literature has exploited some promising
solutions for URLLC systems to achieve different targets, e.g., spectrum efficiency
(Chang et al., 2019; Mohamed et al., 2021), energy efficiency (Ayidh et al., 2020; Haque
et al., 2023), power control (Wang and Zhang, 2019; Yang et al., 2021). Considering
the ultra-reliable uplink transmission design between multiple robots and a central
controller with stringent delay requirements, some scholars meet the requirements of
system throughput and reliability by jointly optimising error probability, block allocation
and transmit power allocation (Celebi et al., 2022; Cheng and Shen, 2022). In Chang
et al. (2019), the authors studied the resource allocation scheme in real-time uplink
URLLC control system, which aims at maximising the spectrum efficiency by adjusting
the optimal spectrum. In Ayidh et al. (2020), the authors analysed the uplink energy
efficiency of uplink URLLC communication system. To guarantee the ultra-reliable
low-latency services for the resources-limited devices, Sui et al. (2023) proposed an
energy-efficient frame allocation method to determine the size of the resource block.
By analysing the characteristics of interference matrices, Wang and Zhang (2019)
constructed a feasible power control scheme by scheduling the close-by links silent. In
the multiple subcarrier systems, each subcarrier can be shared to multiple users, and each
user is allowed to reuse the independent subcarriers, which will inevitably cause user
interference. A method based on channel selection and power control scheme is used
to solve the weighted rate maximisation problem in device-to-device (D2D) network
(Tan et al., 2019). In the existing literature, methods such as stochastic geometry (Dai
et al, 2017), and game theory (Zhou et al., 2020), have been applied to optimise
the transmission power. However, due to the large-scale connections of massive users
in future applications, various quality of service requirements need to be considered.
In particular, each user making decision individually can cause a direct influence on
interference level of other users, while the problem of power control and blocklength
are coupled. In conclusion, it is challenging to obtain the optimal resource allocation
scheme in the dynamic wireless communication system.

Different from the conventional optimisation methods, deep reinforcement learning
(DRL) can store the history experience and select a beneficial action from the predefined
action space based on history experience to obtain the maximal reward. Thus, it is more
efficient to solve the complex decision-making tasks that optimise the transmit power
and blocklength. Kasgari et al. (2020) proposed a resource allocation scheme based on
the experienced DRL to guarantee the high reliability and low latency performance for
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each wireless user under data rate constraints. Gu et al. (2020) applied DRL method
to solve the subcarrier power allocation problem for the dynamic link environment
in D2D communication system. To ensure low access latency and high connectivity
density, Tran et al. (2023) proposed a DRL method to suppose energy-efficient resource
allocation strategies. In Wang et al. (2023), a multi-agent soft-actor-critic-discrete based
URLLC-constrained scheme was proposed to maximise the throughput. To reduce the
energy consumption and delay of mobile devices, Naveen et al. (2023) proposed the
energy-saving resource allocation scheme based on DRL method. A method based on
deep learning was also proposed for joint optimisation of reconfigurable intelligent
surface and power allocation of access point over each subcarrier (Zhong et al., 2022).

In this work, we consider an uplink URLLC communication network, where each
IoT device uses to the shared subcarriers to send their information to the base station
(BS) under blocklength and power constraints. In this URLLC communication system,
we aim to optimise the channel blocklength and the subcarrier transmit power jointly to
maximise the sum rate, subject to the maximum blocklength and transmit power. The
main contributions of the work are summarised as follows:

• We adopt the finite blocklength theory to model the rate metric in uplink URLLC
communication system and formulate the rate maximisation optimisation problem
under the blocklength and transmit power of IoT devices constraints. The
non-convex rate problem is transformed into the multi-agent decision process.
Thus, each subcarrier has a capable of making intelligent decision in its own
communication environment.

• A distributed deep Q-network (DQN)-based algorithm is proposed to optimise the
transmit power and blocklength, in which each subcarrier works as the
independent agent to select the best action. The independent state space, action
space, and the piecewised reward function are constructed to satisfy the rate
performance and the blocklength constraints. Moreover, the experience replay and
random sampling strategies are adopted to decrease the dependency of agents’
training data during the learning process.

• Extensive simulation results show that the proposed scheme achieves better rate
performance compared with Q-learning scheme and the greedy scheme. The
convergence of the proposed scheme is validated under different learning rates
and training episodes.

2 System model

We consider an uplink URLLC IoT network consisting of a single-antenna BS
and K single-antenna IoT devices, in which all devices share the subcarrier set
N = {1, 2, ..., N} and transmit the information to the BS concurrently. All the IoT
devices are serving by the BS depicted in Figure 1. For simplicity of exposition, let Nk

and Kn denote the occupied subcarrier index of the kth device and device indication
using the nth subcarrier, respectively. W is the total transmission bandwidth and each
subcarrier spacing is Wsc =

W
N . For simplicity, we assume that each device has Na

subcarriers, and the channel information between the BS and the IoT devices keep
constant due to low mobility and short-range coverage.
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Figure 1 System model of uplink URLLC IoT communication network (see online version
for colours)

The channel gain between the BS and the kth IoT device over the nth subcarrier is
expressed as follows:

gk,n =
√

βkhk,n (1)

where βk represents the large-scale fading and hk,n denotes the small-scale fading
between the kth IoT device and the BS over the nth subcarrier. The transmit symbol
of the kth IoT device on the nth subcarrier, denoted as sk,n, is assumed to be an
independent and identical complex Gaussian variable, i.e., sk,n ∼ CN(0, 1). Thus, the
received signal at the BS over the nth subcarrier is given by

yn =
∑
k∈Kn

√
pk,ngk,nsk,n + zn (2)

where pk,n denotes the transmit power of kth IoT device over the nth subcarrier,
and zn is the received noise with zero-mean and variance σ2 at the BS. The
signal-to-interference-plus-noise ratio (SINR) γk,n between the kth device and the BS
over nth subcarrier can be given by

γk,n =
pk,n|gk,n|2∑

i∈Kn\k
pi,n|gi,n|2 + σ2

(3)

In the infinite blocklength communication, the reliable transmission can be achieved
without decoding errors. However, packet size of IoT device is always small in URLLC
system due to latency requirements or application characteristics, which means that the
accurate encoding rate cannot be obtained from the perspective of Shannon’s channel
capacity. Thus, for given error probability and finite blocklength, the achievable rate
Rk,n between the kth IoT device and the BS over nth subcarrier can be approximated
(Polyanskiy et al., 2010).

Rk,n = log2(1 + γk,n)−

√
V (γk,n)

lk,n

Q̃−1(ηk)

ln 2
(4)
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where ηk and lk,n denote the required error probability of the kth device and
the blocklength of the kth device over the nth subcarrier, respectively. According
to Polyanskiy et al. (2010) and Fang et al. (2021), the approximation is very
accurate when the blocklength is greater than 100. V (γk,n) = 1− 1/(1 + γk,n)

2

is the channel dispersion and Q̃−1(x) is the inverse Gaussian Q-function with
Q̃(x) = 1√

2π

∫∞
x

exp−t2/2 dt. Therefore, the communication rate of the k-device in
URLLC communication system is written as

Rk =
∑
n∈Nk

Rk,n (5)

Our target is to maximise the sum rate of URLLC communication system by optimising
subcarrier’s power and blocklength jointly, thus the optimisation problem is formulated
as follows:

(P1): max
{pk,n,lk,n}

K∑
k=1

Rk (6)

s.t.

0 ≤ pk,n ≤ Pmax, n ∈ N , k = 1, ...,K (7)
Rk ≥ Rmin, (8)
lk,n ≥ Lmin, (9)
K∑

k=1

N∑
n=1

lk,n ≤ Lmax, (10)

where Pmax, Rmin, Lmin and Lmax denote the maximum transmit power, the minimum
rate, the minimum blocklength and maximum blocklength, respectively. Lmax is always
related to the transmission duration T and system bandwidth W , i.e., Lmax = WT
(Li et al., 2019; Giuseppe et al., 2016; Feng et al, 2022), which means that the data
transmission under the latency constraint, and the transmission has to be complete
within Lmax blocklength. On the one hand, the sum-rate depends on its dynamic
environment, thus the objective function of optimisation problem is non-convex. On
the other hand, the transmit power, the blocklength are coupling to have a direct
effect on SINR and rate respectively, and there exists huge computation complexity to
search multi-device’s power and blocklength in unknown system. Thus, it is difficult to
obtain the optimal solution via the standard convex optimisation method. To solve this
non-convex problem, we transform problem (P1) into a decision process and propose
an intelligent DRL-based scheme to select the power and allocate the blocklength.

3 Proposed power control scheme based on DRL

Recently, DRL is one of promising machine learning methods to solve the resource
allocation problem to enable the intelligence of wireless communication systems since it
has a capable of making a decision by selecting the potential action based on the stored
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experiences and using the deep neural network to learn instead of the massive number
of values. Markov decision process (MDP) is applied to model the RL process. MDP
can be modelled by a tuple ⟨S,A, R, γ⟩ with the state space S, action A, reward R and
discount factor γ ∈ [0, 1] (Zhao et al., 2023). At the step t, the agent selects the action
at by interacting with the system environment to maximise the long-term cumulative
reward Rt = rt +

∑t−1
t′=1 γ

(t−t′)rt′ .
Different the conventional optimisation methods, we propose a multi-agent RL

scheme for blocklength allocation and power control, which is suitable for the
high-dimensional action space. To construct an efficient RL algorithm, we need to form
the sate space of the environment and action space of agent, and model the specific
reward function of the environment to satisfy the constraints and maximise the objective
function of problem (P1).

3.1 State, action and reward function

• Agent: in our work, each subcarrier works as the agent in the RL process.
Specifically speaking, when the nth subcarrier of the kth device is the current
agent at the step t, the agent can independently decide the transmit power value
ap,tk,n and the blocklength al,tk,n derived from the current state stk,n and reward rt to
satisfy the power and blocklength constraints, and maximise the sum rate
performance.

• Action space: the action space includes the discrete transmit power values and the
blocklength values, therefore each agent can select action
atk,n = {ap,tk,n, a

l,t
k,n} ∈ A = {Ap,Al} in any state to transition the next state

during time slot t. For simplicity, we assume that each agent has the same the
action space Ap = {0, Pmax

Lp−1 ,
2Pmax
Lp−1 , ..., Pmax},Al = {0, Lmax

Ll−1 ,
2Lmax
Ll−1 , ..., Lmax},

where Pmax and Lmax denote the maximum of transmit power and the system total
blocklength, and Lp and Ll denote the length of the action space Ap,Al,
respectively. The agent can independently select the action ap,tk,n ∈ Ap, al,tk,n ∈ Al

to maximise the reward value.

• State space: the state space consists of desired power and interference power,
respectively, i.e., the state of the kth device over the nth subcarrier at the step t is
expressed as

stk,n = [ptk,n|gk,n|2, ..., pti,n|gi,n|2, ...], i ∈ Kn (11)

In the initial state, i.e., t = 0, each agent can randomly select the subcarrier power
and blocklength according to the constraints (7), (9) and (10). Because of the
current state stk,n and the action atk,n, the agent can obtain the next state st+1

k,n .

• Reward function: to maximise the communication rate of the k-device under the
blocklength constraint, we use the difference between the system blocklength and
the used blocklength as

ϕ =
K∑

k=1

N∑
n=1

lk,n − Lmax, n ∈ N , k = 1, ...,K (12)
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and design the segmented reward function of each agent as

rtk,n(stk,n, atk,n) =


−λϕ−Rt

k,n, if Rt
k,n < Rmin and ϕ > Lmax,

−λϕ+Rt
k,n, if Rt

k,n ≥ Rmin and ϕ > Lmax,

−Rt
k,n, if Rt

k,n < Rmin and ϕ ≤ Lmax,

Rt
k,n, otherwise.

(13)

where λ ∈ (0, 1) is the weighted parameter. It is observed that the agent has the
penalty value when the blocklength constraint (9) and (10) is not satisfied, and
can obtain more reward value when blocklength becomes smaller. Thus, the agent
can select the potential action to maximise the rate performance.

Figure 2 The framework of proposed DQN-based scheme (see online version for colours)

3.2 Proposed deep Q-network algorithm

Considering the continuous power and blocklength variables in the URLLC
communication system are quantised into discrete values, DRL creates the state-action
function that characterises the impact of chosen actions on performance in specific
states. On the other hand, the complexity of the selected algorithm becomes an important
index in this paper. The whole procedure of DRL algorithm mainly contains two parts:
reward calculation and action selection.

The computational complexity of all agents to calculate the reward is O(N.|sk,n|)
and it is determined by the number of agents. The complexity of action selection
is usually determined by the network structure, and the appropriate algorithm is
particularly important such as DQN and DDPG. The neural network structure of DQN
agents includes a single neural network with three hidden layers and 3K hidden nodes
in each layer. For the DQN network, the number of neurons in the mth layer is
Um, and the number of layers in the DQN network is M . Thus, the computational
complexity of the DQN networks for all agents is O(K(|sk,n|.U2 +

∑M
m=3(Um−1Um +

UmUm+1 + UM−1.|ak,n|))) (Xi et al., 2021). However, there are two complex neural
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networks at each DDPG agent. Each actor and critic network consists of three hidden
layers, with 3K hidden nodes in each layer. Therefore, the complexity of the actor
network is OA(K(|sk,n|.U2 +

∑MA

m=3(Um−1Um + UmUm+1 + UM−1.|ak,n|))), and the
critic network can be expressed as OC(K(|sk,n|.U2 +

∑MC

m=3(Um−1Um + UmUm+1 +
UM−1.|ak,n|))). The computational complexity of the DDPG network is OA +OC

(Ciftler et al., 2022). The implementation of DDPG is more complex compared to DQN
method. Thus, DQN method is more suitable for solving the optimisation problem (P1)
in this work.

DQN method employs the neural networks to learn the policy instead of
storing state-action values, effectively reducing the dimensionality of the action space
(Wu et al., 2021). The proposed DQN-based design framework for the URLLC
communication system is illustrated in Figure 2. With the control policy ξ for the nth

subcarrier, the Q-function is written as

Qξ(stn, atn) = E

rn(stn, atn) + t−1∑
j=0

γjrn(sjn, ajn)

 (14)

where γ ∈ [0, 1] is the discount factor. The Q-function is connected to the current reward
when the discount factor γ = 0, implying that the agent’s action select depends on the
current reward rn(stn, atn). The optimal action to maximise the rate performance in (P1)
is at,∗n = argmaxajn∈A Qξ(stn, ajn) by searching Q-value under different potential actions
(Wu et al., 2021).

We can obtain the optimal control policy ξ∗ by updating the Q-function as follows:

Qt+1(stn, atn) = Q(stn, atn) + ν

(
r(stn, atn) + γ max

ajn∈A
Q(st+1

n , ajn)−Q(stn, atn)
)
(15)

where ν represents the learning rate. According to (15), each subcarrier has the capacity
to update the Q-function and learn the control policy by selecting actions that maximise
the stored Q-values, subsequently maximising rewards. To address action selection
within the constraints of limited state-action information, an ϵ-greedy strategy is used
for environment exploration. The exploration probability ϵ is defined as

atn =

random(A), with probalility ϵ,

argmax
ajn∈A

Qξ(stn, ajn), with probability 1− ϵ. (16)

According to this strategy, the subcarrier exhibits a stochastic behaviour by taking
random actions with a probability denoted as ϵ, thereby facilitating exploration
within the URLLC communication environment. Considering the subcarrier’s unknown
state space demands extensive memory and leads to slow convergence, utilising
a deep neural network to intelligently extract features from available datasets can
alleviate computational complexity by predicting outputs. As shown in Figure 2,
the tuple comprising state, action, reward, and next state serves as input for a
deep neural network. This network produces Q-values, denoted as Q(st+1

n , atn|θt) and
Q(st+1

n , atn|θ−t ), within estimate and target neural networks. Here, θt and θ−t represent
parameters of the estimate and target neural networks during the ith training iteration,
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respectively (Li et al., 2021). In the deep neural network, the target neural network
replicates the estimated neural network every Nrep steps. This strategy ensures their
proximity for stability purposes. Thus, optimising neural network parameters θi through
an appropriate loss function becomes crucial for obtaining the optimal Q-function. The
defined loss function is as follows:

L(θt) =
∣∣∣∣r(stn, atn)+γ max

ajn∈A
Q′(st+1

n , ajn|θ−t )−Q(stn, atn|θt)
∣∣∣∣2 (17)

On the basis of the loss function and the training dataset, various optimiser, including
the gradient descent algorithm, can be employed to acquire the optimal parameters for
the neural network.

Algorithm 1 Multi-agent power control and blocklength allocation scheme based on deep
Q-network for URLLC communication system

1: Initialise URLLC communication system: number of IoT devices K, subcarrier set N ,
subcarrier spacing Wsc and error probability η.

2: Initialise DQN parameters: learning parameters {ν, γ, ϵ}, number of agents M , the
maximal episode Nep, batch size Nbat and neural network.

3: for i = 1 : Nmax do
4: Initialise the environment and state s0.
5: for j = 1 : M do
6: Initialise the state s0n, and obtain the corresponding action atn from the action set
A by ϵ-greedy method.

7: Execute the action atn, compute the reward rtn according to (13) and obtain the
next state st+1

n . Store < stn, atn, rtn, st+1
n > into the experience-reply memory and select

the batch samples from the memory randomly.
8: If t%Nrep ==0, duplicate the estimate neural network to target neural network.
9: Train the neural network by the loss function in (17) to optimise the parameter θ,

t← t+ 1.
10: end for
11: end for
12: Generate the power value pn and blocklength value ln over each agent and compute the

rate performance.

The training data is crucial for effectively training the deep neural network. To address
the dependency on training data, the experience replay and random sampling methods
are employed. We use an experience replay memory, denoted as Nmem, to store tuples
from the RL learning process. This data is updated every Ntr steps, ensuring the training
data remains fresh. The random sampling scheme is employed to complete batches
by randomly selecting experience data from the replay memory. This approach helps
smooth the transition between historical data and current observations (Li et al., 2021).
The proposed DQN-based scheme for URLLC communication systems is shown in
Algorithm 1.

4 Simulation results

In this section, we demonstrate the simulation results that highlight the effectiveness
and convergence of the proposed DQN-based algorithm for the power control
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and blocklength allocation scheme. Additionally, we analyse the impact of various
parameters on the sum-rate performance. We consider that all IoT devices are randomly
distributed in a circular area with a radius of 800 m centred on the base station. The
large-scaling fading between the kth device and the BS is modelled as βk = 128.1 +
37.6 log 10(dk) (Chang et al., 2019) with dk denoting the distance and the small-scaling
between the kth device and the BS over nth subcarrier is written as hk,n ∼ CN(0, 1). The
neural network consists of one input layer, three hidden layers, and one output layer. To
optimise the parameters of the neural network, this work employed the gradient descent
method. And fresh training data consistently updates the oldest historical data in the
experience memory. To ensure an efficient batch data size, training begins after Nbat
steps.

Table 2 Simulation parameters for URLLC communication system

Symbol Description Value

Wsc Bandwidth 30 KHz, 60 KHz
Pmax Maximum transmit power of each subcarrier 20 dBm
σ2 Noise power –90 dBm
Na Subcarrier number of each IoT device 2
Rs Radius of BS 800 m
Lp Length of power control action space 8
Ll Length of blocklength allocation action space 10
η Error probability {10−5, 10−7}
γ Discount factor 0.9
Nbat Batch size 64

Figure 3 The sum rate versus under different training episodes (see online version for colours)
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The simulation environment is Intel i7 CPU, Python 3.5 and Tensorflow 1.10 to train
the deep neural network. All results are averaged over 200 episodes. The simulation



386 H. Wang et al.

parameters are shown in Table 2. We adopt Q-learning scheme and greedy scheme
as the benchmark schemes for comparison. The Q-learning algorithm is a class of
value-based reinforcement learning methods. It involves organising states and actions
within a Q-table to store corresponding Q values. This table is then utilised to select
actions that obtain the maximum benefits. Similarly, the greedy algorithm, a commonly
employed approach, focuses on choosing the optimal option within the current state to
get the best solution.

Figure 4 The sum rate versus the learning rate ν = [0.1, 0.01, 0.001, 0001]
(see online version for colours)
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Figure 3 depicts the rate performance comparison between the proposed DQN-based
scheme and benchmark schemes under distinct learning episodes. The performance of
the proposed scheme based on DQN consistently outperforms that of the benchmarks. It
is also seen that the rate performance of the proposed schemes and the Q-learning-based
scheme converge to the optimal value as the training episode increases and the
convergence rate of the proposed scheme is significantly faster and more stable. It is
shown that the proposed scheme outperforms the Q-learning-based scheme by 16.08%.
This is attributed to the utilisation of experience replay and random sampling from the
batch during the learning process in the proposed scheme, enabling the agent to adeptly
and efficiently adapt to dynamic environmental changes.

Figure 4 shows the influence of learning rate on rate of the proposed DQN-based
scheme. It can be seen that when the learning rate is 0.0001, the proposed algorithm
has poor convergence and can not obtain a good power allocation policy. We also
can find that when the learning rate is 0.1 or 0.01, the rate converges quickly and
it has a comparatively higher value. Thus, the proposed scheme can converge to a
stable performance by selecting the optimal learning rate depending on the different
communication environments
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Figure 5 The effect of number of IoT devices on the average rate of the proposed scheme
with fixed N (see online version for colours)
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Figure 5 the effect of number of IoT devices on rate performance of the proposed
scheme. It is observed that as the IoT device number and the increase of the ratio of the
subcarrier number, the rate of each device decreases, e.g., the rate of IoT device with
the ratio K

N = 1/3 achieves the gain of the rate performance up to 114.68% compared
to the ratio K

N = 1. It is originated from the increasing of interference power as the ratio
increases.

Figure 6 depicts the effect of the subcarrier spacing and the error probability on
the rate performance. The 3GPP standard, release-15, introduces the concept of min-slot
to support the URLLC applications by reducing the transmission time interval (3GPP
TR38.912, 2016), and NR release-15 has scalable numerology with subcarrier spacing
of 15 KHz, 30 KHz, and 60 KHz below 6 GHz, and 120 KHz or 240 KHz above 6 GHz
(Joachim et al., 2018). It is observed that the rate improves as the subcarrier spacing
increases. On the other hand, URLLC applications, such as industrial automation and
autonomous vehicles, require extremely low error rates to ensure reliability and safety
(Haque et al., 2023). To ensure the safety of such applications, the communication
system must operate with extremely low error rates (Khan et al., 2022), e.g., the
error probabilities using 10−5 and 10−7 reflect the safety-critical requirements of these
applications. It is observed that as the required error probability η decreases, the rate
performance decreased as well, which is consistent with the rate expression (4).

Different parameter weights affect the algorithm’s convergence and stability. The
effect of the weight parameter of the reward function on the sum rate performance is
shown in Figure 7. It is observed that the convergence value of the proposed scheme
decreases with the increase of the weight parameter, which originates from the designed
reward function is related to the blocklength and sum rate. According to (13), the
difference among the obtained reward results when the weight parameter λ = 0.1 is
greater than that of reward results when the weight parameter λ = 0.5 . Thus, the
proposed scheme can choose the optimal actions for small weight parameters. However,
small weight parameter may cause unstable sum rate.
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Figure 6 The sum rate versus the subcarrier spacing with Wsc = [30, 60] KHz and the error
probability with η = [10−5, 10−7] (see online version for colours)
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Figure 7 The sum rate versus the weight parameter of the reward function with
λ = [0.1, 0.3, 0.5] (see online version for colours)
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5 Conclusions

In this paper, we studied the joint blocklength allocation and power control to
maximise the rate performance in the uplink URLLC IoT network under the subcarrier
power, blocklength and rate constraints. We decompose the non-convex optimisation
problem into a multi-agent RL process, in which each subcarrier acts as an agent
to intelligently determine its power. Depending on DQN, we introduced the joint
scheme for blocklength allocation and power control, incorporating experience replay
to circumvent training data dependencies. The simulation results demonstrate that the
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proposed scheme outperforms the benchmark scheme in terms of sum-rate performance
and convergence. In the future, investigating the intelligence schemes of URLLC
systems with multiple antennas are interesting.
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