

International Journal of Applied Cryptography

ISSN online: 1753-0571 - ISSN print: 1753-0563
https://www.inderscience.com/ijact

Finding differential trails on ChaCha by means of state
functions

Emanuele Bellini, Juan Grados, Rusydi H. Makarim, Carlo Sanna

DOI: 10.1504/IJACT.2024.10063705

Article History:
Received: 18 October 2021
Last revised: 28 February 2023
Accepted: 08 March 2023
Published online: 03 May 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijact
https://dx.doi.org/10.1504/IJACT.2024.10063705
http://www.tcpdf.org

156 Int. J. Applied Cryptography, Vol. 4, Nos. 3/4, 2023

Copyright © 2023 Inderscience Enterprises Ltd.

Finding differential trails on ChaCha by means of
state functions

Emanuele Bellini*, Juan Grados and Rusydi H. Makarim
Cryptography Research Center,
Technology Innovation Institute,
Abu Dhabi, UAE
Email: emanuele.bellini@tii.ae
Email: juan.grados@tii.ae
Email: rusydi.makarim@tii.ae
*Corresponding author

Carlo Sanna
GNSAGA of INdAM and of CrypTO,
The Group of Cryptography and Number Theory of Politecnico di Torino,
Politecnico di Torino,
Torino, Italy
Email: carlo.sanna.dev@gmail.com

Abstract: We provide fast algorithms to compute the exact additive and XOR differential
probabilities of ChaCha20 half quarter-round H and, under an independence assumption, an
approximation of the differential probabilities of the full quarter-round. We give experimental
evidence of the correctness of our approximation, and show that the independence assumption
holds better for the XOR differential probability than the additive differential probability. We
then propose an efficient greedy strategy to maximise differential characteristics for the full
quarter-round, and use it to determine explicit differential trails for the ChaCha permutation. We
also provide an MILP model to search for differential trails in ChaCha and compare its
performance and effectiveness with our method. We believe these results might bring new
insights in the differential cryptanalysis of ChaCha20 and of similar ARX ciphers.

Keywords: ChaCha20; differential cryptanalysis; additive differential probability; XOR
differential probability; state functions.

Reference to this paper should be made as follows: Bellini, E., Grados, J., Makarim, R.H. and
Sanna, C. (2023) ‘Finding differential trails on ChaCha by means of state functions’, Int. J.
Applied Cryptography, Vol. 4, Nos. 3/4, pp.156–175.

Biographical notes: Emanuele Bellini is a Senior Director of the Cryptography Research Center
of the Technology Innovation Institute in Abu Dhabi, UAE. He also worked as a Cryptographer
in DarkMatter LLC (UAE) and Telsy S.p.A. (Italy). He received his PhD in Coding Theory and
Cryptography from the University of Trento, Italy, and Master’s and Bachelor’s degree from the
University of Turin, Italy.

Juan Grados obtained his BSc from the Universidad Nacional de Trujillo in Peru in 2009.
Subsequently, he was awarded a scholarship to pursue his MSc and PhD at the National
Laboratory for Scientific Computing (LNCC) in Brazil, where he earned both degrees in 2010
and 2018, respectively. He then gained experience working in cybersecurity for various
companies in Brazil before joining the Cryptography Research Centre at the Technology
Innovation Institute, a private research institution located in Abu Dhabi, UAE. His primary
research focuses on symmetric cryptography, with a particular interest in cryptanalysis of stream
and block ciphers.

Rusydi H. Makarim is a Cryptographer. His research work focuses on the design and the
cryptanalysis of symmetric-key primitives. Previously he worked as a Lead Cryptography
Analyst at the Cryptography Research Center, Technology Innovation Institute (TII). Prior to TII,
he was a PhD student at the Mathematical Institute, University Leiden and CWI Cryptology
Group, working on the development of Groebner bases algorithm tailored for the cryptanalysis of
multivariate public-key cryptosystem. His main research interests are techniques to solve
multivariate quadratic polynomial equations over a finite field and cryptographic aspect of
(vectorial) Boolean functions. He is also a contributor to SageMath.

 Finding differential trails on ChaCha by means of state functions 157

Carlo Sanna is a researcher (RTDb) working in the Group of Cryptography and Number Theory
of the Department of Mathematical Sciences of the Polytechnic of Turin, Italy. He received his
PhD in Pure and Applied Mathematics from the University of Turin (joint with the Polytechnic
of Turin), and Master’s and Bachelor’s degree from the University of Turin.

1 Introduction
Due to their efficiency in software, to their simple
description, and to their resistance against timing attacks,
ARX ciphers have become among the most popular
symmetric constructions. These ciphers are based on only
three basic bitwise operations: modular addition, bitwise
rotation, and eXclusive OR, hence the name ARX.

A non-exhaustive list of the most popular ARX
symmetric ciphers includes:

1 Cryptographic permutations such as SPARKLE
(SCHWAEMM and ESCH) (Beierle et al., 2019),
candidate to the NIST Lightweight Cryptography
standardisation process (NIST LWC) (NIST, 2019).

2 Block ciphers such as the Rivest cipher RC5 (Rivest,
1994), the South Korean Electronic and
Telecommunication Research Institute cipher LEA
(Hong et al., 2013) the NIST LWC candidate Limdolen
(Mehner, 2019, using a Feistel structure and ARX
operations to achieve diffusion), the American NSA
cipher Speck (Beaulieu et al., 2015) standardisation in
ISO/IEC 29167-22, the tiny encryption algorithm
(TEA) (Wheeler and Needham, 1994) and Threefish
(2010), used as Skein internal permutation.

3 Stream ciphers such as Bernstein’s Salsa20 (Bernstein,
2005, 2008b) and ChaCha20 (Bernstein, 2008a). The
latter one is part of the TLS 1.3 standard.

4 Hash functions such as the SHA-3 Project (NIST,
2007) finalists (2007–2012) BLAKE2 (Aumasson
et al., 2013) and Skein (Ferguson et al., 2010), and
other SHA-3 candidates, Blue Midnight Wish
(Gligoroski et al., 2009), CubeHash (Bernstein, 2008c),
Shabal (Bresson et al., 2008), SIMD (Leurent et al.,
2009).

5 Message authentication codes such as Chaskey (Mouha
et al., 2014), standardised in ISO/IEC 29192-6.

A common technique to evaluate the security of a
symmetric cipher is differential cryptanalysis. In order for
this technique to be successful, the attacker needs to find
input/output pairs of a cipher such that they have a fixed
difference, called differential characteristic, with respect to
a certain operation. These characteristics must occur more
or less often than how they would occur in a random
function. In order to compute the probability for such a
characteristic to occur, one has to break the cipher in
smaller components and study how the probability
propagates through these components. Despite several
works investigated the problem just described in the case of
ARX constructions, its accurate calculation still remains an

open problem for those ARX ciphers with large components
and/or a large state, as it is the case, for example, for
Salsa20, ChaCha20, or BLAKE2.

1.1 Related works
As mentioned above, one of the first steps to assess the
security against differential cryptanalysis is to efficiently
and accurately evaluate the probability with which
differences with respect to a certain operation propagate
through the basic components of a cipher and through their
composition. In the case of ARX ciphers, one might
consider differences with respect to the three ARX
operations. In this work, we will only focus on exclusive or
and modular addition differences.

The first to determine an exact formula to compute the
XOR differential probability of modular addition, denoted
as xdp, in a linear time with respect to the input size, were
Lipmaa and Moriai (2001). Note that, in general, if n is the
size of the input, it is not possible to perform such operation
faster than O(n), as one must read the entire input at least
[although faster than O(n) is possible if differences are
sparse, see Mouha et al., 2010]. In 2004, Lipmaa et al.
obtained the dual result of Lipmaa and Moriai (2001), by
computing the additive differential probability of the XOR
operation, denoted by adp⊕.

In 2005, in his PhD thesis, Daum (2005) collected a set
of differential properties of bit rotation; in particular he
defined the additive and the XOR differential probability of
bitwise rotation, adp and xdp.

Taking inspiration from the cryptanalysis techniques for
SHA-1 by De Canniere and Rechberger (2006) and Mouha
et al. (2009), the results of Lipmaa and Moriai (2001) and
Lipmaa et al. (2004) were generalised by Mouha et al.
(2010). In this work, the authors introduced the elegant
theory of state functions (S-functions in brief). These
provided a unified framework to compute the XOR
differential probability of modular addition, even when this
has more then two inputs, and, consequently, of
multiplication by a constant, and the additive differential
probability of the XOR operation. S-functions allow to
derive differential properties by means of simple matrix
multiplications.

Even knowing how the probability with which additive
or XOR differences propagates through basic operations,
such as modular addition, XOR or rotation, it is not
straightforward to compute how this probability propagates
through compositions of these operations. In particular,
Velichkov et al. (2011) showed how to compute the additive
differential probability of what they called the ARX
operation, i.e., ARX(a, b, r, d) = (()) .a b r d⊕ They

158 E. Bellini et al.

also showed that, due to the input/output dependency of the
three operations, this differential probability differs
significantly from the simple multiplication of the
differential probability of each operation. Indeed, the
accurate calculation of the probability of a differential
characteristic still remains an open problem for many ARX
constructions.

The just mentioned results have been used to mount
cryptographic attacks to several ciphers. Aumasson et al.
(2009), use the algorithms provided in Lipmaa and Moriai
(2001) for computing differential properties of modular
addition to find modular differentials and mount a
boomerang attack on Threefish. Since the methods from
Velichkov et al. (2011) do not scale well with large
components. In 2012, Velichkov (2012) introduced the
concept of a UNAF difference, representing a set of
specially chosen additive differences. This allows them to
find a three-round differential trail in Salsa stream cipher of
probability 2–4, and then to mount a key recovery attack on
Salsa reduced to five rounds, with data complexity of 27
chosen plaintexts and time complexity of 2,167 encryptions.
A couple of years later, the results from Lipmaa and Moriai
(2001), Lipmaa et al. (2004), Mouha et al. (2010) and
Velichkov et al. (2011) were used by Biryukov et al. to
instantiate automatic search of differential trails in TEA,
XTEA, RAIDEN (Biryukov and Velichkov, 2014), and in
SPECK (Biryukov et al., 2016) block ciphers.

Table 1 Weight of the best differential trails found using both
the S-function (for XOR and ModAdd differential
trails) and the MILP (only for XOR differential trails)
techniques

Input difference

nonce, counter nonce, counter full state

Technique

S-function MILP S-function

Round XOR-diff. XOR-diff. ModAdd-diff

1 3 3 208
2 37 37 286
3 157 147 304
4 349 316 306

Currently, the best known attacks on ChaCha20 stream
cipher are derivations of the work of Aumasson et al.
(2008), which is a differential-linear key recovery attack.
Most recent variants of this work include (Shi et al., 2012;
Dey and Sarkar, 2017; Beierlee et al., 2020; Coutinho and
Neto, 2021; Dey et al., 2022). In these attacks, one round
XOR-differential trails with average probability 2–4.5 and
input difference injected in the nonce/counter is used.
Truncated XOR-differential trails (1-bit input difference and
1-bit output difference) for three rounds and probability
2–5.26 are used, e.g., in Aumasson et al. (2008). A
XOR-differential trail for two rounds and probability 2–24
was found by Aaraj et al. (2017) by means of MILP. In this
work the input difference was injected in the full state.

1.2 Our contribution
In this work, we slightly generalise the theory of
S-functions, to be able to compute the exact additive and
XOR differential probability of ChaCha20 half quarter-
round H. Supposing independence among two consecutive
applications of H, we are able to compute also the
differential probability of the full quarter-round. We also
provide experimental evidence of the correctness of our
approximation, and show that the independence assumption
seems to hold better for the xdp rather than the adp. We also
propose a greedy strategy to maximise differential
characteristic probability for the full quarter-round, and then
use this strategy to find explicit XOR and additive
differential trails up to four rounds. We also implement an
MILP model to find XOR-differential trails and compare
the best trails found with the S-function technique. The
results are summarised in Table 1.1 The code to reproduce
our results can be found at https://github.com/
Crypto-TII/chacha differential trails with s-functions.

We believe these results might bring new insights in the
differential cryptanalysis of ChaCha20 and of similar
constructions.

1.3 Outline
In Section 2, we introduce the necessary notions to describe
our result. We devote from Subsection 3.1 to Subsection 3.3
to the maximisation of the XDP for ChaCha quarter round,
while from Subsection 4.2 to Subsection 4.3 we deal with
the same problem in the ADP case. In Section 5, we provide
explicit differential trails and simple statistics on the
minimum, maximum and average quarter round differential
characteristic probability. In Section 6, we describe an
MILP model to find differential trails for ChaCha internal
permutation. Finally in Section 7, we draw the conclusions
and point to possible future developments of this research.

2 Preliminaries
In this section, we first define the notation we adhere to, we
recall ChaCha20 specifications, formally define the concept
of XDP and ADP, and the theory of S-functions.

2.1 Notation

For every positive integer n, let n denote the set of n-bits
words. For all , ,nx y ∈ we use the following notation:

x[i] ith bit of x

x ⊕ y bitwise XOR of x and y

x y addition modulo 2n of x and y

x y subtraction modulo 2n of x and y

x r left rotation of x by r bits

x r right rotation of x by r bits

 Finding differential trails on ChaCha by means of state functions 159

x || y concatenation of x and y

Moreover, for vectors x, y, ,k
n∈ all the previous

operations are extended component wise. Also, we write 2

for the field of two elements, and t for the greatest integer
not exceeding t.

2.2 ChaCha stream cipher
ChaCha20 stream cipher has a state of 512 bits, which can
be seen as a 4 × 4 matrix whose elements are binary vectors
of w = 32 bits, i.e.

{ } ()
0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 w
0,...,3, 2
0,...,3 2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

.ii j n n
j

x x x x
x x x x

X x
x x x x
x x x x

= ×
=

 
 
 = = ∈
 
 
 



Definition 1 (ChaCha half quarter round): Let xi, yi, i = 0, 1,
2, 3 be w-bit words and r1, r2 ∈ {1, …, w – 1}. Then we
define ChaCha half quarter round (y0, y1, y2, y3) =

1 2 0 1 2 3HQR (, , ,)r r x x x x as follows:

()

()

0 0 1

3 0 3 1

2 3 2

1 2 1 2.

y x x
y y x r
y y x
y y x r

=
= ⊕
=
= ⊕









Definition 2 (ChaCha quarter round): Let xi, yi, i = 0, 1, 2, 3
be w-bit words and r1, r2, r3, r4 ∈ {1, …, w – 1}. Then we
define ChaCha quarter round

() ()0 1 2 3 0 1 2 3, , , QR , , ,y y y y x x x x=

as follows:

() ()
() ()

1 2

3 4

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

, , , HQR , , ,
, , , HQR , , ,

r r

r r

y y y y x x x x

y y y y y y y y

′ ′ ′ ′ =
′ ′ ′ ′=

We show in Figure 1 a schematic drawing of Chacha half
quarter round. The permutation used in ChaCha20 stream
cipher performs 20 rounds or, equivalently, ten double
rounds. Two consecutive rounds (or a double round) of
ChaCha permutation consist in applying the quarter round
four times in parallel to the columns of the state (first
round), and then four times in parallel to the diagonals of
the state (second round). More formally:



Definition 3 (ChaCha column/diagonal round):
We let { } { }0,...,3 0,...,3, ,

0,...,3 0,...,3
andi ii j i j

j j
X x Y y= =

= =
= = be two n × n

matrices with entries in w
2 .

A column round Y = C(X) is defined as follows, with
i = 0, 1, 2, 3:

() ()0, 1, 2, 3, 0, 1, 2, 3,, , , QR , , , .i i i i i i i iy y y y x x x x=

Figure 1 The ChaCha half quarter round diagram

A diagonal round Y = D(X) is defined as follows, for i = 0,
1, 2, 3 and where each subscript is computed modulo n = 4:

() ()0, 1, +1 2, +2 3, +3 0, 1, +1 2, +2 3, +3, , , QR , , , .i i i i i i i iy y y y x x x x=

2.3 Differential probabilities

Definition 4: Let F be a function from k h
n n→  and let

(∆x, ∆y) ∈ .k h
n n×  The XOR differential probability

(XDP) of F with respect to the input/output pair (∆x, ∆y) is
defined as

xdp (Δ Δ) Pr [(Δ) () Δ],
kn

F F F
∈

→ = ⊕ = ⊕
x

x y x x x y


where the probability is meant for an uniformly distributed
random variable .k

n∈x  Similarly, the additive differential
probability (ADP) of F with respect to the input/output pair
(∆x, ∆y) is defined as

adp (Δ Δ) Pr [(Δ) () Δ].
kn

F F F
∈

→ = =
x

x y x x x y


 

In general, there is no simple way to express the differential
probability of the composition of two functions in terms of
the differential probabilities of the single functions.
However, we have the following result:

Lemma 1: Let : and :k h h
n n n nF G→ →     be two

functions, and let (∆x, ∆z) .k
n n∈ ×   Assume that:

1 For an uniform random variable ,k
n∈x  the events

F(x  ∆x) = F(x) ∆y and G(F(x) ∆y) = G(F(x)) 

∆z are independent, for every ∆y ∈ k.

2
Pr [(() Δ) (()) Δ]

Pr [(Δ) () Δ].
kn

hn

G F G F

G G
∈

∈

=

= =
x

w

x y x z

w y w z




 

 

Then we have

Δ

xdp (Δ Δ) xdp (Δ Δ)xdp (Δ Δ),
kn

G F F G

∈

→ = → →
y

x z x y y z


 (1)

160 E. Bellini et al.

and

Δ

adp (Δ Δ) adp (Δ Δ)adp (Δ Δ).
kn

G F F G

∈

→ = → →
y

x z x y y z


 (2)

Proof: Using the definition of XDP and the assumptions, we
get

Δ

Δ

Δ

xdp (Δ Δ) Pr[((Δ)) (()) Δ]

Pr[(Δ) () Δ (() Δ)

(()) Δ]

Pr[(Δ)) () Δ]Pr[(() Δ)

(()) Δ]

Pr[(Δ)) () Δ]Pr[(Δ)

() Δ]

xdp (Δ Δ)

kn

kn

kn

G F

F

G F G F

F F G F

G F

F F G F

G F

F F G

G

∈

∈

∈

→ = =

= = ∧

=

= =

=

= =

=

= →







y

y

y

x z x x x z
x x x y x y

x z
x x x y x y

x z
x x x y w y

w z
x y









 

  



  



  



Δ

xdp (Δ Δ),
kn

G

∈

→
y

y z


as claimed. A similar reasoning gives the result on the
ADP.□

Even if F and G do not satisfy the two assumptions of
Lemma 1, it can be that (1) and (2) are good approximations
for the XDP and ADP of the composition F ○ G. In general,
(1) and (2) can be used as heuristic formulas for the
differential probabilities of F ○ G.

Definition 5: Given two functions : k h
n nF →  and

: ,h
n nG →   we say that F and G are ‘independent’ if

(1) and (2) are good approximations for the differential
probabilities of F ○ G.

Figure 2 Representation of the ith block of an S-machine

2.4 S-functions
This section contains the preliminaries on S-functions (short
for ‘state functions’) needed for the computation of the ADP
of half quarter round performed in Subsection 4.1. Actually,
we shall develop a bit more theory than the one strictly
necessary for Subsection 4.1.

S-functions were introduced in Mouha et al. (2010) and
were already applied to the differential cryptanalysis of
some ARX primitives (Mouha et al., 2010; Velichkov et al.,
2011). Here we redefine S-functions in a slightly more
general way, which is better suited for our purposes.
Throughout this section, let n and k be fixed positive
integers.

Definition 6: An S-machine is a (n + 2)-tuple (, sin, f0, …,
fn–1) consisting of:

• a finite set of states 

• an initial state sin ∈ 

• n partial functions 22: k
if × → ×   called

transitions functions.

An S-machine can be represented as a device built of n
blocks labelled by i = 0, …, n – 1 (see Figure 2). Starting
from i = 0, the ith block takes as input the current state si and
the bits x1[i], …, xk[i]. If (si, x1[i], …, xk[i]) ∈ dom(fi) then
the block returns as output y[i] and the next state si+1, which
is fed to the (i+1)th block, if any. If (si, x1[i], …, xk[i]) ∉
dom(fi) then the computation stops. Considering when the
computation is performed through all the n blocks leads to
the definition of S-functions.

Definition 7: An S-function F is a partial function
2 2()n k n→  such that there exists an S-machine (, sin, f0,

…, fn–1) with the following property: For every (x1, …, xk) ∈
dom(F) there exist some states s0 = sin, s1, …, sn ∈  such
that

() ()
() ()

1

+1 1

, [], ..., [] ,
, [] , [], ..., [] for 0,1, ..., 1,

i k i

i i i k

s x i x i dom f
s y i f s x i x i i n

∈

= = −

where y = F(x1, …, xk). In other words, an S-function is a
partial function that is computed by an S-machine.

Remark 1: Our definition of S-function differs from the one
given in Mouha et al. (2010) in two ways. First, in Mouha
et al. (2010), the transition functions fi for i = 0, …, n – 1
are all equal to a single function f, although a generalisation
with different transition functions is already suggested.
Second, and more important, our definition lets the
transition functions be partial functions, while in Mouha
et al. (2010) only total functions are considered.

Figure 3 The ith block of the XOR of two S-functions

It is easy to see that, among the functions 22()n k →  all
coordinate projections (x1, …, xk) ,jx with j ∈ {1, …,

 Finding differential trails on ChaCha by means of state functions 161

n}, and all constant functions (x1, …, xk) ,c with 2 ,nc ∈
are S-functions. The next lemma shows that the set of
S-functions is closed by addition and XOR.

Lemma 2: If F and G are S-functions, then F ⊕ G and
F G are S-functions.

Figure 4 The ith block of the addition of two S-functions

Proof: Let (, sin, f0, …, fn–1) and (, tin, g0, …, gn–1) be the
S-machines of F and G, respectively. The S-machine
computing F ⊕ G has set of states ,×  initial state (sin,
tin), and ith block built from fi and gi as shown in Figure 3.
The S-machine computing F G is only slightly more
complex, because it has to take care of the propagation of
carries. It has set of states 2 ,× ×  initial state (sin, tin, 0),
and ith block built from fi and gi as shown in Figure 4.□

Remark 2: In general, rotations cannot be computed by
S-functions. Indeed, already the simple rotation 1 1x 
cannot be computed by an S-function, since the least
significant bit of 1 1x  is x1[n – 1], which is not a
function of x1[0], …, xk[0].

Definition 8: Let F be an S-function with S-machine (, sin,
f0, …, fn–1), and let i ∈ {0, …, n – 1} and 2.γ∈ Also, let
s1:= sin, s2, …, sh be all the elements of . The ith transition
matrix of F is the h × h matrix Ai,γ = , 1 ,()j j ha ≤ ≤  where ,ja 
is equal to the number of 1 2, ..., kχ χ ∈ such that (sj, χ1, …,
χk) ∈ dom(fj) and (,)s γ = fj(sj, χ1, …, χk).

The next theorem is the key result about counting solutions
of equations involving S-functions.

Theorem 1: Let F be an S-function and let 2 .ny ∈ Then,
we have that the number of (x1, …, xk) ∈ dom(F) such that
F(x1, …, xk) = y is equal to

0, [0] 1, [1] 1, [1]y y n y nLA A A C− −

where L:= (1, 0, …, 0) is a row vector of length
, (1, 1, ..., 1)h C =  is a column vector of length h, and Ai,γ

are the transition matrices of F.

Proof: Let (, sin, f0, …, fn–1) be the S-machine of F and let
s1:= sin, s2, …, sh be all the states in . We build a directed
graph G in the following way. The vertices of G are the
pairs (i, sj), where i = 0, …, n – 1 and j = 1, …, h.
For all i = 0, …, n – 2, 1 2, 1, ..., and , ..., ,kj h χ χ= ∈ 

1if (, []) (, , ...,)i j ks y i f s χ χ= then we draw an edge from
(i, sj) to (+1,).i s (Note that we can draw multiple edges
between two vertices). Hence, by the definition of
S-function, the (x1, …, xk) ∈ dom(F) such that F(x1, …, xk)
= y are in bijection with the direct paths from (0, s1) to one
of (n, s1), …, (n, sh). Moreover, Ai,y[i] is the adjacency matrix
of the subgraph consisting of vertices (i, sj), (+1,).i s By a
well-known result of graph theory (Chittenden, 1947), the
(,)j  entry of the matrix B:= A0,y[0]A1,y[1]∙∙∙ An–1,y[n–1] is
equal to the number of direct paths from (0, sj) to (,).n s
Then the claim follows since LBC is equal to the sum of the
elements in the first row of B.□

Remark 3: More generally, the (i, j) entry of the matrix

0, [0] 1, [1] 1, [1]y y n y nA A A − −

is equal to the number of (x1, …, xk) ∈ dom(F) that leads the
S-machine associated to F from state i to state j.

2.5 Rotate, add, and rotate back

For every integer r ∈ [0, n), let us define the operator
r


by

:
r

x y x y=
  
 

for all , ,nx y ∈ where the arrows denote left/right
rotations by r bits. Letting x = xL || xR and y = yL || yR, where

, and , ,L L r R R n rx y x y −∈ ∈  it follows that

() ()
() ()
() ()
() () ,

r
L R L R

R R R L

R R L L

L L R R

x y x x y y

x x y y

x y c x y

x y x y c

=

=

=

=

 





 



  

  

where c:= (xL + yL) = 2r. Hence, the computation
r

x y



proceeds almost as the addition modulo 2n addition of x and
y, with the only differences that: there is no carry
propagation from the (n – r)th digit; and the carry c of the
nth digit is added to the least significant digit. In particular,

note that
r

x y

 cannot be computed by an S-function, since

its least significant bit depends on c, which in turn depends
on the bits of x and y after the (n – r)th position. However,
assuming that we know the value of c in advance, we can

compute
r

x y

 by an S-machine and check at the end that

the nth carry is actually equal to c. This would be our
strategy to prove Lemma 6 later.

162 E. Bellini et al.

3 XOR differential probability of ChaCha round
In this section, we first give an exact formula for the XOR
differential probability of the half quarter round of ChaCha.
Then we provide a heuristic formula for the XDP of
ChaCha quarter round, under the assumption that the two
half quarter rounds are ‘independent’. Finally, we illustrate
a greedy strategy to find the best XDP of ChaCha full
round.

3.1 XDP of ChaCha half quarter round
Here, we give a formula for the XOR differential
probability of the half quarter round of ChaCha. First, we
need a formula for the XDP of modular addition. This was
computed in Mouha et al. (2010) using S-functions.

First let us define the matrices that are going to be used
in the next lemma:

000 001 011 111
2 0 0 0 1 1 0 0
0 0 1 1 0 0 0 2

A A A A       
= = = =       
       

with the remaining matrices given by A010 = A100 = A001 and
A101 = A110 = A011, and L = (1 0), C = (1 1)T.

Lemma 3: Let Aw, L, and C be the matrices defined above.
Then, we have that for all 0 1Δ , Δ , Δ :nx x y ∈

()0 1 [0] [1] [1]xdp Δ , Δ Δ 2 ,n
w w w nx x y LA A A C−

−→ = 

where w[i] :=∆x0[i] || ∆x1[i] || ∆y[i] for i = 0, 1, …, n – 1.

Proof: See [27, Theorem 4]. Note that, our Aw, L, C are the
transposes of the Aw, L, C in Lipmaa et al. (2004), hence the
order of the product is reversed.□

Now, we express the XDP of the half quarter round in terms
of the XDPs of the modular additions.

Lemma 4: For all 4Δ , Δ ,nx y ∈ we have

1 2HQRxdp (Δ Δ) 0r r x y→ ≠

only if

0 3 3 1Δ Δ Δy x y r⊕ =  (3)

2 1 1 2Δ Δ Δ .y x y r⊕ =  (4)

In such a case

()
()

1 2HQR
0 1 0

3 2 2

xdp (Δ Δ) xdp Δ , Δ Δ
xdp Δ , Δ Δ .

r r x y x x y
y x y

→ = →

⋅ →





Proof: By the definition of 1 2,HQR ,r r we have that

1 2 1 2, ,HQR (Δ) HQR () Δr r r r⊕ = ⊕x x y y

is equivalent to

() () ()0 0 1 1 0 1 0Δ Δ Δx x x x x x y⊕ ⊕ = ⊕  (5)

() ()() ()()0 0 3 3 1 0 3 1 3Δ Δ Δy y x x r y x r y⊕ ⊕ ⊕ = ⊕ ⊕  (6)

() () ()3 3 2 2 3 2 2Δ Δ Δy y x x y x y⊕ ⊕ = ⊕  (7)

() ()() ()()2 2 1 1 2 2 1 2 1Δ Δ Δ .y y x x r y x r y⊕ ⊕ ⊕ = ⊕ ⊕  (8)

Equations (6) and (8) simplify at once to (3) and (4),
respectively, which do not depend on x and y. Therefore,
they are necessary conditions for the XDP to be non-zero.

Since the map 4 4 :n n→ x z  given by

()()

0 0

1 1

2 2

3 0 1 3 1

z x
z x
z x
z x x x r

=
=
=

= ⊕ 

is a bijection, we can make the change of variable x z
without changing the XDP, and equations (5) and (7) turn
into

() () ()0 0 1 1 0 1 0Δ Δ Δz x z x z z y⊕ ⊕ = ⊕  (9)

() () ()2 3 3 2 2 3 2Δ Δ Δ .z y z x z z y⊕ ⊕ = ⊕  (10)

Note that (9) and (10) are independent, since the first is an
equation in z0, z1 while the second is an equation in z2, z3.
The claim follows.□

At this point, using Lemma 3 and Lemma 4, the XDP of
ChaCha half quarter round can be computed in time O(n).

3.2 XDP of ChaCha quarter round
The next lemma provides a heuristic formula for the XDP of
ChaCha quarter round, under the assumption that the two
half quarter rounds are ‘independent’.

Lemma 5: Assuming that 1 2 3 4, ,HQR , and HQRr r r r are
‘independent’ (see Definition 5), for every 4Δ , Δ n∈x z  we
have

()
()
()
()

HQR
0 1 0

3 2 2

0 1 0

3 2 2

xdp (Δ Δ) xdp Δ , Δ Δ
xdp Δ , Δ Δ
xdp Δ , Δ Δ
xdp Δ , Δ Δ ,

x x y
y x y
y y z
z y z

→ = →

⋅ →

⋅ →

⋅ →

x z 







 (11)

where 4Δ n∈y  is given by

()
()
()
()

0 3 3 1

1 2 1 4

2 1 1 2

3 0 3 3

Δ Δ Δ
Δ Δ Δ
Δ Δ Δ
Δ Δ Δ .

y x y r
y z z r
y x y r
y z z r

= ⊕

= ⊕
= ⊕

= ⊕






 (12)

Proof: Since 3 4 1 2, ,QR HQR HQR ,r r r r=  by the assumption
that 3 4 1 2, ,HQR and HQRr r r r are ‘independent’ we have

,1 2

,3 4

HQRQR

Δ

HQR

xdp (Δ Δ) xdp (Δ Δ)

xdp (Δ Δ).

r r

kn

r r

∈

→ = →

→


y

x z x y

y z
 (13)

 Finding differential trails on ChaCha by means of state functions 163

Furthermore, from the first part of Lemma 4, we get that the
addend of (13) is non-zero only if it holds the following
system of equations

0 3 3 1

2 1 1 2

0 3 3 1

2 1 1 2

Δ Δ Δ
Δ Δ Δ
Δ Δ Δ
Δ Δ Δ ,

y x y r
y x y r
z y z r
z y z r

⊕ =
⊕ =
⊕ =
⊕ =






which solved gives a unique value of ∆y by (12). Then the
claim follows from the second part of Lemma 4.□

For small word sizes n = 5, 6, 7, 8, and for a random
sample of ∆x’s and ∆y’s, we compared the values of the
XDP of the quarter round (with r1 = 4, r2 = 3, r3 = 2, r4 = 1)
given by the heuristic formula of Lemma 5 with the exact
values computed by brute force. Actually, since the XDP is
zero for most of the choices of ∆x and ∆y, we generated ∆x
randomly, then we generated a random 4

n∈x  and we
picked ∆y = QR(x ⊕ a∆x) ⊕ QR(x), which guarantees that
the XDP is non-zero. We collect the results in Table 2 and
Figure 5, which shows the distribution of L = log(exact
value of xdpHQR/ heuristic value of xdpHQR), given by
Lemma 5 as the input/output differences ranges over our
16,000 samples. For example, the top left graph shows that
slightly less than 5,000 input/output differences have L in
[–1, –0.5]. Notice that the reason for the deviation is due to
the lack of independence of 1 2 3 4, ,HQR and HQR .r r r r

Table 2 E is the average factor which the heuristic formula of
Lemma 5 is off from the exact XDP, and σ is the
standard deviation (sample size N = 16,000)

n 5 6 7 8

E 0.67 0.63 0.60 0.57
σ 0.52 0.56 0.61 0.6

3.3 Maximising the XDP of the half quarter round
We now illustrate an algorithm, based on the previous
results, that takes as input 4Δ n∈x  and returns as output

4Δ n∈y  such that ,1 2HQRxdp (Δ Δ)r r →x y is high.
Assuming the independence of the half quarter rounds, this
algorithm can then be applied multiple times to obtain high
XDPs for the quarter round, or even iterated of the quarter
round up to a full round.

First, in light of Lemma 3, we have Algorithm 1,
which is a greedy algorithm that takes as input

0 1,Δ Δ and ,n nx x c∈ ∈  and returns as output Δ ny ∈
and p such that p = xdp (∆x0, ∆x1 → ∆y) is high. If the
parameter c is changed, then a different ∆y is returned (c = 0
means that ∆y is obtained in a completely greedy way). This
is to avoid being trapped in a local maximum.

Figure 5 Distribution of the logarithm of the ratio between the
XDP given by Lemma 5 and the correct value of the
XDP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8
(see online version for colours)

(a)

(b)

(c)

164 E. Bellini et al.

Figure 5 Distribution of the logarithm of the ratio between the
XDP given by Lemma 5 and the correct value of the
XDP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8
(continued) (see online version for colours)

(d)

Then, according to Lemma 4, to obtain a high XDP for the
half quarter round two calls to Algorithm 1 are sufficient, as
done in Algorithm 2. Note that Algorithm 2 has two
parameters c0, c1 that when changed give different values of
∆y.

Algorithm 1:

1 Function Greedy_XDP_Add(∆x0, ∆x1, c):
2 ∆y ← 0 (n bits word)
3 B ← 4 × 4 identity matrix
4 p ← 1
5 for i = 0, 1, …, n – 1 do
6

0 10 Δ [] Δ [] 0x i x iB BA←

7
0 11 Δ [] Δ [] 1x i x iB BA←

8 p0 = 4–(i+1)LB0C
9 p1 = 4–(i+1)LB1C
10 if (p0 ≥ p1 and c[i] = 0) or (p0 < p1 and c[i] = 1) then
11 ∆y[i] ← 0
12 B ← B0
13 p ← p0
14 else
15 ∆y[i] ← 1
16 B ← B1
17 p ← p1

18 return ∆y, p

Algorithm 2:

1 Function Greedy_XDP_HQR(r1, r2, ∆x0, ∆x1, ∆x2, ∆x3, c0,
c1):

2 ∆y0, p0 ← Greedy_XDP_Add (∆x0, ∆x1, c0)
3 3 3 0 1Δ (Δ Δ)y x y r← ⊕ 

4 ∆y2, p1 ← Greedy_XDP_Add (∆y3, ∆x2, c1)

5 1 1 2 2Δ (Δ Δ)y x y r← ⊕ 

6 p ← p0p1
7 return ∆y0, ∆y1, ∆y2, ∆y2, p

4 Additive differential probability of ChaCha
round

In this section we illustrate the results on the ADP analog to
the results on the XDP of the previous section.

4.1 ADP of ChaCha half quarter round
Here, we give a formula for the additive differential
probability of the half quarter round of ChaCha.

First, let us define the matrices that are going to be used
in the next lemma. These are

000 001

010

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0

A A

A

   
   
   
   
   
   = =   
   
   
   
      
   

= 011

100

0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 0

A

A

   
   
   
   
   
   =   
   
   
   
      
   

= 101

1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

A

   
   
   
   
   
   =   
   
   
   
      
   

 Finding differential trails on ChaCha by means of state functions 165

110 111

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0

A A

R

   
   
   
   
   
   = =   
   
   
   
      
   

=

() ()
() ()

0 1

0 1

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1T T

L L

C C

 
 
 
 
 
 
 
 
 
 
  
 

= =

= =

Lemma 6: Let Aw, Li, Ci, and R be the matrices defined as
above. For all constants 0 1 01, , na a a ∈ and every integer
r ∈ [0, n), the number of solutions 2

0 1(,) nx x ∈ of the
equation

() () ()0 0 1 1 0 1 01
r

x a x a x x a⊕ =


    (14)

is equal to

[0] [1] [1] [] [1]
{0,1}

,i w w w n r w n r w n i
i

L A A A RA A C− − − −
∈
  

where w[i]: = a0[i] || a1[i] || a01[i] for i = 0, 1, …, n – 1.

Proof: The result follows from the theory developed in
Subsection 2.4. First, we consider

() () ()()0 0 1 1 0 1 01 ,y x a x a x x a= ⊕ ⊕    (15)

Noticing that y = 0 gives (14) with
r
 replaced by . We

represent the states of the S-function associated to (15) by
the 3-bits words c0 ||c1|| c01, where c0, c1, c01 are the carries
in the first, second, and third addition of (15), respectively.
We identify each state c0 ||c1|| c01 with the corresponding
3-bit integer 4c0 + 2c1 + c01. The S-function for (15) is
defined by the recurrences

() ()
()

()()

0 0 0 1

0 1 01 01

0 0 0 0

1 1 1 1

01 0 1 01 01

[] [] [] [] []
[] [] [] ,
[]+ []+ / 2 ,
[]+ [] + / 2 ,

[] [] + []+ 2 ,

i iy i x i a i c x i a i c
x i x i a i c

c x i a i c
c x i a i c

c x i x i a i c

← ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

←   
←   

 ← ⊕ 

The first of which can be simplified to y[i] ← a0[i] ⊕ a1[i]
⊕ a01[i] ⊕ c0 ⊕ c1 ⊕ c01. By Theorem 1, the number of

2
0 1(,) nx x ∈ such that y = 0 is equal to

[0] [1] [1]w w w nLA A A C−

where L:= (1, 0, …, 0) and (1, 1, ..., 1)C =  are vectors of
length 8 (the number of states), and the (i, j) entry of

0 1 01Aα α α is equal to the number of 2
0 1 2(,)χ χ ∈ such that

()0 1 01 0 1 01 0 0 0 00, + + / 2 ,c c c c χ c′  ⊕ ⊕ ⊕ ⊕ ⊕ = =  α α α α

() ()()1 1 1 1 01 0 1 01 01+ + / 2 , + + / 2 ,c χ c c χ χ c ′ ′ = = ⊕   α α

with i = 4c0 + 2c1 + c01 and 0 1 014 + 2 + .i c c c′ ′ ′= Finally, in
light of Remark 3 and Subsection 2.5, we introduce the

matrices R, Li, and Ci to handle :
r
 the projection matrix R

has the purpose to not propagate the carry c01 of the (n – r)th
digit; and Li, Ci have the purpose of counting only the

0 1(,) nx x ∈ such that the initial and final state have the
same c01.□

Now define 0 1 0 1(,) : ()rJ x x x x r= ⊕  for every
integer r ∈ [0, n) and every 0 1, .nx x ∈

Lemma 7: Let Aw, Li, Ci, and R be the matrices of Lemma 6.
For all 2Δ , Δ ,n n∈ ∈x y  and every integer r ∈ [0, n), we
have

[0] [1] [1] []
{0,1}

[1]

adp (Δ Δ) 4

,

rJ n
i w w w n r w n r

i

w n i

x y L A A A RA

A C

−
− − −

∈

−

→ =  



where 0 1[] : Δ [] Δ [] (Δ)[]w i x i x i y r i=  for i = 0, 1, …,
n – 1.

Proof: Noting that 0 0 1 1 0 1(Δ , Δ) (,) Δr rJ x x x x J x x y=  

is equivalent to 0 0 1 1 0 1(Δ) (Δ) () (Δ),
r

x x x x x x y r⊕ = ⊕


  
the claim follows immediately from Lemma 6. □

Lemma 8: For all 4Δ , Δ ,n∈x y  we have

,1 2HQRadp (Δ Δ) 0r r x y→ ≠

Only if

0 1 0Δ Δ Δx x y= (16)

3 2 2Δ Δ Δ .y x y= (17)

In such a case

()
()

,1 2 1

2

HQR
0 3 3

1 2 1

adp (Δ Δ) adp Δ , Δ Δ
adp Δ , Δ Δ .

r r r

r

J

J

y x y
x y y

→ = →

⋅ →

x y
 (18)

Proof: By the definition of 1 2,HQR ,r r we have that

1 2 1 2, ,HQR (Δ) HQR () Δr r r r=x x y y 

is equivalent to

166 E. Bellini et al.

() () ()0 0 1 1 0 1 0Δ Δ Δx x x x x x y=     (19)

() ()() ()()0 0 3 3 1 0 3 1 3Δ Δ Δy y x x r y x r y⊕ = ⊕    (20)

() () ()3 3 2 2 3 2 2Δ Δ Δy y x x y x y=     (21)

() ()() ()()2 2 1 1 2 2 1 2 1Δ Δ Δ .y y x x r y x r y⊕ = ⊕    (22)

Equations (19) and (21) simplify at once to (16) and (17),
respectively, which do not depend on x and y. Therefore,
they are necessary conditions for the adp to be non-zero.

Since the map 4 4 :n n→ x z  given by

()()()0 0 1 1 1 2 0 1 3 1 2 3 3, , ,z x x z x z x x x r x z x= = = ⊕ =  

is a bijection, we can make the change of variable x z
without changing the adp, and equations (20) and (22) turn
into

() ()() ()()0 0 3 3 1 0 3 1 3Δ Δ Δz y z x r z z r y⊕ = ⊕    (23)

() ()() ()()1 1 2 2 2 1 2 2 1Δ Δ Δ .z x z y r z z r y⊕ = ⊕    (24)

Note that (23) and (24) are independent, since the first is an
equation in z0, z3 while the second is an equation in z1, z2.
Moreover, they can be rewritten as:

() ()() ()1 10 3 0 3 0 3 3, Δ , Δ , Δr rJ z z y x J z z y= 

() ()() ()2 21 2 1 2 1 2 1, Δ , Δ , Δ ,r rJ z z x y J z z y= 

which are the equations in the ADPs of 1 2andr rJ J and the
claim follows.□

At this point, using Lemma 7 and Lemma 8, the ADP of
ChaCha half quarter round can be computed in time O(n).

4.2 ADP of ChaCha quarter round
The next lemma provides a heuristic formula for the ADP of
ChaCha quarter round, under the assumption that the two
half quarter rounds are ‘independent’.

Lemma 9: Assuming that 1 2 2 3, ,HQR and HQRr r r r are
‘independent’ (see Definition 5), for every 4Δ , Δ n∈x z  we
have

()
()
()
()

1

2

3

4

QR
0 3 3

1 2 1

0 3 3

1 2 1

adp (Δ Δ) adp Δ , Δ Δ
adp Δ , Δ Δ
adp Δ , Δ Δ
adp Δ , Δ Δ

r

r

r

r

J

J

J

J

y x y

x y y
z y z

y z z

→ = →

⋅ →

⋅ →

⋅ →

x z

 (25)

where 4Δ n∈y  is given by

0 0 1

1 0 0 1

2 2 3

3 2 3 2

Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ
Δ Δ Δ Δ .

y x x
y z x x
y z z
y z z x

=
=
=
=



 



 

 (26)

Proof: Since 3 4 1 2, ,QR HQR HQR ,r r r r=  by the assumption
that 3 4 1 2, ,HQR and HQRr r r r are ‘independent’, we have

, ,1 2 3 4HQR HQRQR

Δ

adp (Δ Δ) adp (Δ Δ)adp (Δ Δ).r r r r

kn∈

→ = → →
y

x z x y y z


 (27)

Furthermore, from the first part of Lemma 8, we get that the
addend of (27) is non-zero only if it holds the following
system of equations

0 1 0 3 2 2

0 1 0 3 2 2

Δ Δ Δ ,Δ Δ Δ ,
Δ Δ Δ ,Δ Δ Δ ,

x x y y x y
y y z z y z

= =
= =

 

 

which solved gives a unique value of ∆y by (26). Then the
claim follows from the second part of Lemma 8.□

Table 3 E is the average factor which the heuristic formula of
Lemma 9 is off from the exact ADP, and σ is the
standard deviation (sample size N = 15,000)

n 5 6 7 8

E 0.43 0.31 0.31 0.27
σ 0.85 0.97 1.02 1.11

For small word sizes n = 5, 6, 7, 8, and for a random sample
of ∆x’s and ∆y’s, we compared the values of the ADP of the
quarter round (with r1 = 4, r2 = 3, r3 = 2, r4 = 1) given by the
heuristic formula of Lemma 9 with the exact values
computed by brute force. Actually, since the ADP is zero
for most of the choices of ∆x and ∆y, we generated ∆x
randomly, then we generated a random 4Δ n∈x  and we
picked Δ HQR(Δ) HQR(),=y x x x  which guarantees
that the ADP is non-zero. We collect the results in Table 3
and Figure 6.

Figure 6 Distribution of the logarithm of the ratio between the
ADP given by Lemma 9 and the correct value of the
ADP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8
(see online version for colours)

(a)

 Finding differential trails on ChaCha by means of state functions 167

Figure 6 Distribution of the logarithm of the ratio between the
ADP given by Lemma 9 and the correct value of the
ADP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8
(continued) (see online version for colours)

(b)

(c)

(d)

4.3 Maximising the ADP of the half quarter round
Now, we illustrate an algorithm, based on the previous
results, that given as input 4Δ n∈y  returns as output

4Δ n∈x  such that ,1 2HQRadp (Δ Δ)r r →x y is high. Note that
this works backward (it takes as input ∆y and returns ∆x)
respect to the algorithm given in Subsection 3.3 to
maximise the XDP. Assuming the independence of the half
quarter rounds, this algorithm can then be applied multiple
times to obtain high ADPs for the quarter round, or even
iterated of the quarter round up to a full round.

First, in light of Lemma 7, we have Algorithm 3,
which is a greedy algorithm that takes as input

1Δ , Δ andn nx y c∈ ∈  and returns as output 0Δ nx ∈
and p such that 0 1adp (Δ , Δ Δ)rJp x x y= → is high.

Then, according to Lemma 8, to obtain a high ADP for
the half quarter round two calls to Algorithm 3 are
sufficient, as done in Algorithm 4. Note that Algorithm 4
has two parameters c0, c1 that when changed give different
values of ∆x.

Remark 4: Taking as input ∆y and returning as output ∆x,
instead of the contrary, might seem unnatural. We do so
because, once ∆y is fixed, the two factors of the product for
the ADP of half quarter round (18) are independent
functions of ∆x1 and ∆x3 and consequently they can be
independently maximised using Algorithm 3. On the
contrary, if ∆x is fixed, the two factors are not independent
functions of ∆y0, ∆y3 and ∆y1, ∆y2, because equations (16)
and (17) have to be taken into account, and consequently
they cannot be independently maximised.

Algorithm 3:

1 Function Greedy_ADP_J(r, ∆x1, c):
2 ∆x0 ← 0 (n bits word)
3 B ← 8 × 8 identity matrix
4 p ← 1
5 for i = 0, 1, …, n – 1 do
6

10 0 Δ [] (Δ)[]x i y r iB BA← 

7
11 1 Δ [] (Δ)[]x i y r iB BA← 

8 if i = n – r – 1 then
9 B0 ← B0R
10 B1 ← B1R
11 end
12 p0 = 4–(i+1)(L0B0C0 + L1B0C1)
13 p1 = 4–(i+1)(L0B1C0 + L1B1C1)
14 if (p0 ≥ p1 and c[i] = 0) or (p0 < p1 and c[i] = 1) then
15 ∆x0[i] ← 0
16 B ← B0
17 p ← p0
18 else
19 ∆x0[i] ← 1
20 B ← B1
21 p ← p1
22 end
23 end
24 return ∆x0, p

168 E. Bellini et al.

Algorithm 4:

1 Function Greedy_ADP_HQR(r1, r2, ∆y0, ∆y1, ∆y2, ∆y3, c0,
c1):

2 ∆x3, p0 ← Greedy_ADP_J (r1, ∆y0, ∆y3, c0)
3 ∆x1, p1 ← Greedy_ADP_J (r2, ∆y2, ∆y1, c1)
4 0 0 1Δ Δ Δx y x← 

5 2 2 3Δ Δ Δx y y← 

6 p ← p0p1
7 return ∆x0, ∆x1, ∆y2, ∆x2, p

5 Experimental results
In this section, we provide some experimental results. In
particular, we show the best differential characteristics for
ChaCha half quarter round that can be found with our
method. We also provide explicit differential trails and their
corresponding probability for ChaCha permutation.

We first show how close Algorithm 2 is to find a
characteristic with maximum probability. For each 24w input
difference, we computed the maximum xdp by checking
through all possible output differences and compared it to
the value returned by Algorithm 2. The complexity of this
approach for the xdp is 28w and hence we were able to run
this experiment only for 4-bit words. We repeated the same
experiment for the adp. To compute the xdp we used the
result from Lemma 4, while for the adp we used Lemma 8.
In Table 4, we report the results of the experiment. The row
‘#matches’ reports the number of times that the greedy
strategy returns the actual best probability, while the
‘%matches’ is #matches∙100/24w. In the xdp case, the greedy
algorithm returns the best probability about 16% of the
time, and a probability within 50%–40% of the best
probability about 35% of the times; so that it returns a good
probability (either the maximum or half of it) half of the
times. This shows that there might be room for
improvement for the greedy strategy we adopted. In the adp
case, the best probability is returned more than half of the
times. So the greedy strategy seems to be more effective in
the adp case.

We recall that ChaCha state is a 16 32-bit word vector
(s0, …, s15), where s0, …, s3 are initialised with constant
values, s4, …, s11 store a 256 bit key, and s12, …, s15 are
used for the counter and the nonce. Thus, in a single key
differential attack, only these last four words can be used to
inject a difference. Furthermore, the first application of the
four parallel quarter rounds receives as input the words s0+i,
s4+i, s8+i, s12+i, with i = 0, 1, 2, 3. Thus, the attacker can only
inject the difference in the last of these four words. Given
these constrains, the differential characteristic with highest
probability returned by Algorithm 2 is 0 × 00000000
00000000 00000000 00008000 → 0 × 00000800 04044040
80080080 00080080, holding with probability 2–3.

In Table 5, we report the maximum, minimum and
average characteristic probability for half and full quarter
round, found using Algorithm 2 and Algorithm 4.

The probability is computed over a sample of 216 128-bit
random input differences.

In Table 6 and Table 7, we report, respectively, a XOR
and an additive differential trail covering four rounds. The
trails were obtained in few milliseconds of computing time.
These trails could be used for example in differential-linear
attacks such as the one in Beierle et al. (2020). In this work,
the authors use differentials with input difference (0, 0, 0, x)
and probability 2–5 on average. Our method provides an
elegant and automatic way of finding such differentials.
Furthermore, the attack in Beierle et al. (2020) exploits a
differential characteristic for one round only. Using our
method, one extra round could be added to the attack, at the
expense of decreasing the trail probability.

Notice that, contrary to Algorithm 2, Algorithm 4
cannot be used as is to mount a single key differential
attack2, since the additive differential trail is found by
searching for the input differences given an output
difference. This makes it difficult to find an input difference
which is 0 in the input words s0, …, s11. Thus, Algorithm 4
can only be of use for an attacker if combined with other
techniques. Notice also that in Table 7, the three rounds
differential trail from round 2 to round 4 has probability
2–98.4, which is much lower than any other three rounds
differential trail we were able to find for XOR differences
with Algorithm 2.

Last, we also notice that it is easy to build mixed
(additive-XOR) trails, since one could easily match the
output of the additive trail with the input of the XOR one.
For example, if we take round 3 and 4 of Table 7 and use
the output difference as the input difference to Algorithm 2,
we obtain a four round trail of probability 2–(19+2+5+43) = 2–69,
and if we started from round 2 of Table 7, the corresponding
five round trail would have had probability 2–(77.4+19+2+5+43) =
2–146.4. The only problem with this approach is that the input
of the trail cannot be used in the context of ChaCha20
(stream cipher), not even in the related-key scenario, as the
initial state is constrained by the constant value of the first
row of the state, whose additive difference is always 0.

6 Finding XOR-differential trails with MILP
solvers

In this section, we will describe a MILP model to find
differential trails for ChaCha internal permutation. We want
to compare the performance of MILP against the method
presented in Section 3. The techniques used to build our
MILP model are presented in Fu et al. (2016), where the
model aims at differential trails for Speck.

6.1 MILP-based automatic search
We built our MILP model for the ChaCha permutation,
modelling their components using inequalities. In the
following paragraphs, we will describe the inequalities used
to model each component of the ChaCha stream.

 Finding differential trails on ChaCha by means of state functions 169

Table 4 Precision of the greedy strategy applied in Algorithm 2 and Algorithm 4 (see Section 5 for explanation)

range xdp 100% (100%–50%] (50%–40%] (40%–30%] (30%–20%] (20%–10%] (10%–0%]

#matches 11,040 0 23,472 0 22,656 7,072 1,296
%matches 16.85 0.00 35.82 0.00 34.57 10.79 1.97
range adp 100% (100%–50%] (50%–40%] (40%–30%] (30%–20%] (20%–10%] (10%–0%]

#matches 34,344 15,312 3,100 5,372 5,112 2,000 296
%matches 52.41 23.36 4.73 8.19 7.80 3.05 0.45

Table 5 Maximum, minimum and average characteristic probability for half and full quarter round, found using Algorithm 2 and
Algorithm 4

 (c0; c1)
HQR QR

max min average max min average

xdp (0, 0) 2–29:00 2–59:00 2–42:09 2–58:00 2–103:00 2–71:46
adp (0, 0) 2–31:11 2–51:43 2–41:50 2–67:10 2–101:04 2–80:51

Table 6 Four rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential
characteristics found iterating Algorithm 2

Round ∆x

∆y
Probability

Rel. Cum.

1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 08000080 2–7.00 2–7.00
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00100010
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000880
00000000 00000000 00000000 00800008 00000000 00000000 00000000 00080800

2 00000000 00000000 00000000 08000080 00808000 88000000 00100010 88000880 2–35.0 2–42.0
00000000 00000000 00000000 00100010 00001100 10011001 01111011 20002000
00000000 00000000 00000000 00000880 00100010 80088800 00088088 00880880
00000000 00000000 00000000 00080800 00880000 00000000 80888000 08088080

3 00808000 88000000 00100010 88000880 10088001 88091090 00080090 2088A008 2–118. 2–160.
00001100 10011001 01111011 20002000 13303033 30011010 23130232 00411150
00100010 80088800 00088088 00880880 88910888 00800889 88880880 A8002088
00880000 00000000 80888000 08088080 09810880 91980898 19900981 00888800

4 10088001 88091090 00080090 2088A008 81008890 8802008A 90411049 08A00088 2–189. 2–349.
13303033 30011010 23130232 00411150 16074136 12221600 73475523 A333B001
88910888 00800889 88880880 A8002088 08400048 08892888 90000888 809080A1
09810880 91980898 19900981 00888800 039200A0 98889981 90912809 10991188

Table 7 Four rounds additive differential trail (of ChaCha internal permutation), with relative and cumulative probability of the
differential characteristics found iterating Algorithm 4

Round ∆x

∆y
Probability

Rel. Cum.

1 11BC469C 222C642C 3306926E DDF975C0 BFBE7FE0 34F3AE78 FFBEF378 7F7F8000 2–208. 2–208.
2DC13904 02464248 08A714E2 21458940 80008000 80410020 C2844104 80000C40
A27CE21C C90A2EF7 FF3E72F8 BE7AB700 77BEF7C0 FF7F0000 7FFF0000 7EFB7700
0287A010 28E22301 04222F50 81010100 85001084 C1414040 80000080 C0008000

2 BFBE7FE0 34F3AE78 FFBEF378 7F7F8000 80000000 FFFBF800 FFBEFFC0 FF800000 2–77.4 2–286.
80008000 80410020 C2844104 80000C40 00000000 00040000 80408040 00800000
77BEF7C0 FF7F0000 7FFF0000 7EFB7700 80000000 00000000 7FFF8000 FF7FFF80
85001084 C1414040 80000080 C0008000 80000080 00000800 80008000 00008000

170 E. Bellini et al.

Table 7 Four rounds additive differential trail (of ChaCha internal permutation), with relative and cumulative probability of the
differential characteristics found iterating Algorithm 4 (continued)

Round ∆x ∆y
Probability

Rel. Cum.

3 80000000 FFFBF800 FFBEFFC0 FF800000 80000000 00000000 00000000 00000000 2–19.0 2–304.
00000000 00040000 80408040 00800000 00000000 80000000 00000000 00000000
80000000 00000000 7FFF8000 FF7FFF80 00000000 00000000 7FFF8000 00000000
80000080 00000800 80008000 00008000 00000000 00000000 00000000 00800000

4 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 2–2.00 2–306.
00000000 80000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 7FFF8000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00800000 00000000 00000000 00000000 80000000

Table 8 One rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential
characteristics found using the MILP model presented in Subsection 6.1

Round ∆x

∆y
Probability

Rel. Cum.

1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000800 2–3.00 2–3.00
00000000 00000000 00000000 00000000 00000000 00000000 00000000 04044040
00000000 00000000 00000000 00000000 00000000 00000000 00000000 80080080
00000000 00000000 00000000 00008000 00000000 00000000 00000000 00080080

Table 9 Two rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential
characteristics found using the MILP model presented in Subsection 6.1

Round ∆x

∆y
Probability

Rel. Cum.

1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000800 2–4 2–4.
00000000 00000000 00000000 00000000 00000000 00000000 00000000 04044040
00000000 00000000 00000000 00000000 00000000 00000000 00000000 80080080
00000000 00000000 00000000 00008000 00000000 00000000 00000000 00080080

2 00000000 00000000 00000000 80000800 00808000 00000880 00040004 88000880 2–33 2–37.
00000000 00000000 00000000 00040004 44000000 04400440 04444044 02000200
00000000 00000000 00000000 88000000 00040004 08880080 80880008 88088000
00000000 00000000 00000000 08080000 00088000 00000000 00888080 80880800

Table 10 Three rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential
characteristics found using the MILP model presented in Subsection 6.1

Round ∆x

∆y
Probability

Rel. Cum.

1 00000000 00000000 00000000 00000000 80000800 00000000 00000000 00000000 2–4 2–4.
00000000 00000000 00000000 00000000 00040004 00000000 00000000 00000000
00000000 00000000 00000000 00000000 88000000 00000000 00000000 00000000
00008008 00000000 00000000 00000000 08080000 00000000 00000000 00000000

2 80000800 00000000 00000000 00000000 88000880 00808000 00000880 00040004 2–36 2–40.
00040004 00000000 00000000 00000000 02000200 43800000 04400440 04444044
88000000 00000000 00000000 00000000 88088000 00040004 08870080 80880008
08080000 00000000 00000000 00000000 80880800 00088000 00000000 00888080

 Finding differential trails on ChaCha by means of state functions 171

Table 10 Three rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential
characteristics found using the MILP model presented in Subsection 6.1 (continued)

Round ∆x

∆y
Probability
Rel. Cum.

3 88000880 00808000 00000880 00040004 02888208 04004408 14400440 c0000400 2–107 2–147.
02000200 43800000 04400440 04444044 44410005 00021c22 2082280a 04000062
88088000 00040004 08870080 80880008 82000a88 00004000 04410450 00484440
80880800 00088000 00000000 00888080 08888000 00040004 00000010 c000c800

Table 11 Four rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential
characteristics found using the MILP model presented in Subsection 6.1

Round ∆x

∆y
Probability

Rel. Cum.

1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000800 2–3 2–3.
00000000 00000000 00000000 00000000 00000000 00000000 00000000 04044040
00000000 00000000 00000000 00000000 00000000 00000000 00000000 80080080
00000000 00000000 00000000 00008000 00000000 00000000 00000000 00080080

2 00000000 00000000 00000000 00000800 00008008 80080800 40400404 00000880 2–41 2–44.
00000000 00000000 00000000 04044040 04404404 00400040 04040004 02202042
00000000 00000000 00000000 80080080 c0400404 08088008 80000008 88000000
00000000 00000000 00000000 00080080 08080080 00000000 00088008 80800000

3 00008008 80080800 40400404 00000880 40844404 00480840 80080c00 28020224 2–123 2–167.
04404404 00400040 04040004 02202042 20222020 20042444 02002060 30100305
c0400404 08088008 80000008 88000000 04044440 08400848 04400040 20420620
08080080 00000000 00088008 80800000 00484c04 08880808 00484c04 40808400

4 40844404 00480840 80080c00 28020224 e0402040 24042002 400c5814 2a202222 2–147 2–314.
20222020 20042444 02002060 30100305 15250110 20302230 22052143 3e618a08
04044440 08400848 04400040 20420620 00009005 022a4a24 20002044 a4000220
00484c04 08880808 00484c04 40808400 20220240 01009445 202a4a04 00004004

Table 12 Best probabilities found after 24 hours of computation with Algorithm 2 and MILP using different number of cores

Rounds
Strategy

1 2 3 4

p t p t p t p t

Algorithm 2 [single core] 2–3 0.7 s 2–37 1.2 s 2–157 1.9 s 2–349 6.7 s
MILP [single core] 2–3 0.3 s 2–37 3,950 s 2–162 1.2 s 2–426 22,786 s
MILP [56 cores] 2–3 0.3 s 2–37 9 s 2–147 14s 2–314 88 s

Note: The time t reported indicates after how long the trail was found within the 24 hours.

6.1.1 Constraints of XOR operation
For every XOR operation with input differences

2 2andn n∈ ∈a b  and output difference 2 ,n∈c  the
constraints at bit level for j in {0 ∙∙∙ n – 1} are

[] []
[] []
[] []

[]+ []+ [] +2 []
[]+ []+ [] +2

d j a j
d j b j
d j c j
a j b j c j d j
a j b j c j

⊕

⊕

⊕

⊕

≥
≥
≥

≥
≤

 (28)

where d⊕[j] is a dummy variable used to verify there are at
least two active terms in a[j] ⊕ b[j] = c[[j] every time a[j] ≠
0, b[j] ≠ 0, or c[j] ≠ 0.

6.1.2 Constraints of modular addition
To construct the constraints of the modular addition, we
followed (Fu et al., 2016). The authors of Fu et al. (2016)
used 13 * (n – 1) + 5 inequalities to model the modular
addition operation modulus 2n with input differences

172 E. Bellini et al.

2 2and ,n n∈ ∈a b  and output difference 2 .n∈c  For j in
{0 ∙∙∙ n – 2} these inequalities are

[+1]+ [+1] [+1]+ []+ []+ []+ [] 0
[+1] [+1]+ [+1]+ []+ []+ []+ [] 0

[+1]+ [+1]+ [+1]+ []+ []+ []+ [] 0
[+1] [+1] [+1]+ []+ []+ [] [] 3

[+1]+ [+1]+ [+1]+ []+

a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

a j b j c j a j

− ≥ −
− ≥ −

− ≥ −
− − − − ≥ −

[]+ [] [] 0
[+1]+ [+1]+ [+1] [] [] []+ [] 6

[+1] [+1] [+1]+ [] [] []+ [] 6
[+1] [+1] [+1] []+ [] []+ [] 6
[+1] [+1] [+1] [] []+ []+ [] 6

[+1]+

b j c j d j
a j b j c j a j b j c j d j

a j b j c j a j b j c j d j
a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

a j b

− ≥ −
− − − ≥ −

− − − − − ≥ −
− − − − − ≥ −
− − − − − ≥ −

[+1]+ [+1]+ []+ [] []+ [] 0
[+1]+ [+1]+ [+1]+ [] []+ []+ [] 0
[+1]+ [+1]+ [+1] []+ []+ []+ [] 0
[+1]+ [+1] [+1]+ []+ []+ []+ [] 0.

j c j a j b j c j d j
a j b j c j a j b j c j d j
a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

− ≥ −
− ≥ −

− ≥ −
− ≥ −

 (29)

And also the inequalities

[1]
[1]
[1]

[1]+ [1]+ [1] 2
[1]+ [1]+ [1] 2,

d a n
d b n
d c n
a n b n c n d
a n b n c n

+

+

+

+

≥ −
≥ −
≥ −
− − − ≥
− − − ≤

 (30)

where d+ is a dummy variable and d[j] in equation (29) is
the variable representing the function eq of Theorem 2 in
Fu et al. (2016).

Figure 7 The ChaCha quarter round diagram with intermediate
variables 0 1 2 3, , and′ ′ ′ ′Y Y Y Y

6.1.3 Constraints for the quarter round
To model the quarter round it was necessary to create
auxiliary variables for the output differences of the half
quarter round. In Figure 7, we depict these auxiliary
variables 0 1 2 3(, , ,)′ ′ ′ ′Y Y Y Y together with both the inputs
variables (X0, X1, X2, X3) and outputs variables (Y0, Y1, Y2,
Y3) of the quarter round. From Figure 7, we can observe
that the inequalities for the modular addition operations are
the inequalities in equations (29) and (30) where

() (){
() ()}

0 1 0 2 3 2

0 1 0 2 3 2

(, ,) , , , , , ,

, , , , , .

′ ′ ′∈

′ ′ ′

a b c X X Y X Y Y

Y Y Y Y Y Y
 (31)

And the inequalities for the XOR operations are the
inequalities in equation (28) where

() (){
() ()}

3 0 3 1 2 1

3 0 3 1 2 1

(, ,) , , 16 , , , 12 ,

, , 8 , , , 7 .

′ ′ ′ ′∈

′ ′

a b c X Y Y X Y Y

Y Y Y Y Y Y

 
 

 (32)

6.1.4 Constraints for R rounds
Considering that in each round the quarter round is applied
four times, then we need to use the inequalities of quarter
round (31) and (32) four times. Thus, for the entire R rounds
we need R × 4 quarter rounds. This gives us 16n(R + 1)
variables to model the input and output differences of each
quarter round. 16nR variables for modelling d⊕ of equation
(28). 16nR variables for modelling the intermediate outputs
of the quarter rounds. 16R variables for modelling d+ of
equation (29). And 16(n – 1)R variables for modelling the
variable d of equation (29). Summing up, this gives us a
total of 16(3Rn + 2n + R – 1) variables. The number of
inequalities is distributed as follows. (16)(13)((n – 1)R) + 20
inequalities for the modular addition operations. And 96nR
inequalities for the XOR operations. Summing up this gives
us a total 16R(19n – 8) inequalities.

6.1.5 Objective function
Let R be the number of rounds that we are modelling. Also,
let d[r][j] be the variable representing the function eq of
Theorem 2 in Fu et al. (2016) at round r and bit j, then
according to Fu et al. (2016), we need to minimise the
following expression

2

1 0

[][]
R n

r i

d r j
−

= =
 (33)

6.2 Experimental result with MILP
We solved the MILP models in a machine running Ubuntu
20.10 and using 56 parallel Intel(R) Xeon(R) Platinum 8280
CPUs at 2.70 GHz. The available RAM was 1535GiB. We
used MiniZinc (Nethercote et al., 2007) to implement the
model and ORTools (Perron and Furnon, 2023) as the MILP
solver. This solver was the winner of the MiniZinc
Challenge 2020. In all our experiments, we stopped the

 Finding differential trails on ChaCha by means of state functions 173

solver after 24 hours, so the solutions found are not always
the best. We explored the full space only for 1 and 2 rounds.

In Table 8, Table 9, Table 10, and Table 11, we report
the lowest weight differential trails found for the objective
function (33) limiting the time of the solver to 24 hours and
using the 56 physical cores. These trails are for R ∈ {1, 2, 3,
4}.

6.3 Benchmark comparison between MILP and
S-function technique

In Table 12, we present a comparison between the MILP
model and Algorithm 2 in terms of lowest weight found and
time that each technique took to output the solution. The
column labelled by p represents the probability of the best
trail found, while the column labelled by t represents the
time required to find the trail.

In the first row of Table 12 (S-function technique), we
present the results corresponding to Algorithm 2. In this
case, the results where found with a simple Magma script
running on a MacBook Pro with macOS v11.2.3 and using a
single 2.4 GHz Intel Core i9, with negligible RAM usage.
To have a fair performance comparison with the S-function
technique, we tried to solve the MILP model using a single
core, and we reported the best trails found in less than
24 hours in the second row of the table. In the third row, we
report the best probabilities found in 24 h by running the
solver over 56 parallel physical cores and using some
specific constraints, such as bounding the Hamming weight
of the ChaCha state after the first round.

6.4 Comparison with previous work
In 2017, Aaraj et al. presented a MILP model to find
differential trails in ChaCha automatically. To the best of
our knowledge, that MILP model is the only one in the
literature used to find differential trails in ChaCha core
permutation. In this work, the authors inject the input
difference in the full input state. Aaraj et al. constructed two
MILP models, one at a bit level and the other one at a word
level. Using those models, they found differential trails for
two rounds of the ChaCha core permutation with a
probability of 2–24. Note that our MILP model for the
ChaCha core permutation is at the bit level. By considering
differentials in any word of the ChaCha state, we found
differential trails for up to four rounds with a probability of
2–48. In particular, we found differential trails for two rounds
with a probability of 2–2.

We remark that this work is not presenting a full key
recovery attack of reduced round ChaCha as it is done, e.g.,
in Aumasson et al. (2008) and Beierle et al. (2020), but our
focus is on finding ChaCha differential trails in an efficient
way.

7 Conclusions and future work
We proved exact formulas for the XDP and the ADP of the
half quarter round of ChaCha (Lemma 4 and Lemma 8,

respectively). Both consist of matrix products that can be
computed in linear time O(n), and indeed they are very fast
to compute in practice.

Under the hypothesis of independence of half quarter
rounds, we find heuristic formulas for the XDP and the
ADP of the quarter round of ChaCha (Lemma 5 and
Lemma 9, respectively). For small word sizes n = 5, 6, 7, 8
(the real word size of ChaCha is n = 32), we tested these
heuristic formulas by comparing their results with the exact
values of XDP and ADP computed by brute force. We
found that (on average) these formulas are actually lower
bounds for the real XDP and ADP. Moreover, the heuristic
formula for the XDP performs better than the one for the
ADP, meaning both a smaller average error and a smaller
standard deviation (see Table 2 and Table 3). In other
words, the hypothesis of independence of half quarter
rounds is more accurate for the XDP than the ADP. Finally,
we proposed a greedy strategy to compute good quarter
round differential characteristics, and used this strategy to
provide explicit XOR and additive differential trails for up
to three rounds. As a last contribution, we showed how to
build an MILP model to find XOR-differential trails in
ChaCha permutation. The obtained results are similar to the
ones obtained using S-functions. In our implementations,
the method using S-functions seems to be significantly
faster on a single core, but, especially for larger rounds
(3 and 4), a parallelised implementation of the MILP solver
returned better probabilities (see Table 12).

We believe these techniques will help to better
understand the security of ChaCha stream cipher and of
other similar constructions. They could be adopted to
improve current linear-differential attacks (where the
differential is currently exploited over a single round only),
or to build mixed XOR-additive differential attacks.
Towards this direction, we believe it would be interesting to
find optimal quarter round additive characteristics by
starting from the input difference (rather than the output
one), and optimal quarter round XOR characteristics from
the output difference (rather than the input one). Also, there
might exist other greedy strategies which might be more
effective and produce characteristics with higher
probability. We leave as future research how to use these
techniques to mount an attack on ChaCha and affect the
security of the cipher.

Acknowledgements
C. Sanna was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union –
NextGenerationEU.

The work of Rusydi H. Makarim was carried out at the
Technology Innovation Institute LLC

174 E. Bellini et al.

References
Aaraj, N., Caullery, F. and Manzano, M. (2017) ‘MILP-aided

cryptanalysis of round reduced Chacha’, Cryptology ePrint
Archive, Report 2017/1163 [online] https://ia.cr/2017/1163
(accessed 7 December 2023).

Aumasson, J.P., Çalık, C., Meier, W., Özen, O., Phan, R.C.W. and
Varıcı, K. (2009) ‘Improved cryptanalysis of Skein’, in
International Conference on the Theory and Application of
Cryptology and Information Security, Springer, pp.542–559.

Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W. and
Rechberger, C. (2008) ‘New features of Latin dances:
analysis of salsa, chacha, and rumba’, in International
Workshop on Fast Software Encryption, Springer,
pp.470–488.

Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z. and
Winnerlein, C. (2013) ‘BLAKE2: simpler, smaller, fast as
MD5’, in International Conference on Applied Cryptography
and Network Security, Springer, pp.119–135.

Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J.
and Wingers, L. (2015) ‘The SIMON and SPECK lightweight
block ciphers’, in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), IEEE, pp.1–6.

Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J.,
Perrin, L., Udovenko, A., Velichkov, V., Wang, Q. and
Biryukov, A. (2019) ‘Lightweight {AEAD} and hashing
using the sparkle permutation family’, IACR, Trans.
Symmetric Cryptol., Vol. 2020, No. S1, pp.208–261.

Beierle, C., Leander, G. and Todo, Y. (2020) ‘Improved
differential-linear attacks with applications to arx ciphers’, in
Annual International Cryptology Conference, Springer,
pp.329–358.

Bernstein, D.J. (2005) Salsa20 Specification. eSTREAM Project
Algorithm Description [online] https: //www.ecrypt.eu.org/
stream/salsa20pf.html (accessed 7 December 2023).

Bernstein, D.J. (2008a) ‘ChaCha, a variant of Salsa20’, in
Workshop Record of SASC, Vol. 8, pp.3–5.

Bernstein, D.J. (2008b) ‘The Salsa20 family of stream ciphers’, in
New Stream Cipher Designs, Lecture Notes in Computer
Science, Vol. 4986, pp.84–97, Springer.

Bernstein, D.J. (2008c) Cubehash specification (2. b. 1),
Submission to NIST.

Biryukov, A. and Velichkov, V. (2014) ‘Automatic search for
differential trails in ARX ciphers’, in Cryptographers’ Track
at the RSA Conference, Springer, pp.227–250.

Biryukov, A., Velichkov, V. and Le Corre, Y. (2016) ‘Automatic
search for the best trails in ARX: application to block cipher
SPECK’, in International Conference on Fast Software
Encryption, Springer, pp.289–310.

Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C.,
Fuhr, T., Gouget, A., Icart, T., Misarsky, J.F.,
Naya-Plasencia, M., Paillier, P. et al. (2008) Shabal, A
Submission to NIST’S Cryptographic Hash Algorithm
Competition, Submission to NIST.

Chittenden, E.W. (1947) ‘On the number of paths in a finite
partially ordered set’, Amer. Math. Monthly, Vol. 54, No. 7,
pp.404–405.

Coutinho, M. and Neto, T.C.S. (2021) ‘Improved linear
approximations to ARX ciphers and attacks against ChaCha’,
in Canteaut, A. and Standaert, F. (Eds.): Advances in
Cryptology – EUROCRYPT 2021 – 40th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Springer, Zagreb, Croatia, 17–21 October,
Proceedings, Part I, Lecture Notes in Computer Science,
Vol. 12696, pp.711–740, DOI: 10.1007/978-3-030-77870-
5n25, https://doi.org/10.1007/978-3-030-77870-5_25.

Daum, M. (2005) Cryptanalysis of Hash Functions of the
Md4-Family, PhD thesis, Ruhr University Bochum.

De Canniere, C. and Rechberger, C. (2006) ‘Finding SHA-1
characteristics: General results and applications’, in
International Conference on the Theory and Application of
Cryptology and Information Security, Springer, pp.1–20.

Dey, S. and Sarkar, S. (2017) ‘Improved analysis for reduced
round Salsa and Chacha’, Discret. Appl. Math., Vol. 227,
pp.58–69, DOI: 10.1016/j.dam.2017.04.034, https://doi.org/
10. 1016/j.dam.2017.04.034.

Dey, S., Garai, H.K., Sarkar, S., Sharma, N.K. (2022) ‘Revamped
differential-linear cryptanalysis on reduced round ChaCha’, in
Dunkelman, O. and Dziembowski, S. (Eds.): Advances in
Cryptology – EUROCRYPT 2022 – 41st Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Springer, Trondheim, Norway, 30 May–3 June,
Proceedings, Part III, Lecture Notes in Computer Science,
Vol. 13277, pp.86–114, DOI: 10.1007/978-3-031-07082-2n 4,
https: //doi.org/10.1007/978-3-031-07082-2_4.

Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M.,
Kohno, T., Callas, J. and Walker, J. (2010) The Skein Hash
Function Family, Submission to NIST (round 3), Vol. 7,
No. 7.5, p.3.

Fu, K., Wang, M., Guo, Y., Sun, S. and Hu, L. (2016) ‘Milp-based
automatic search algorithms for differential and linear trails
for speck’, FSE, Lecture Notes in Computer Science,
Vol. 9783, pp.268–288, Springer.

Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M.,
Amundsen, J. (2009) ‘Cryptographic hash function blue
midnight wish’, in 2009 Proceedings of the 1st International
Workshop on Security and Communication Networks, IEEE,
pp.1–8.

Hong, D., Lee, J.K., Kim, D.C., Kwon, D., Ryu, K.H. and Lee,
D.G. (2013) ‘Lea: a 128-bit block cipher for fast encryption
on common processors’, in International Workshop on
Information Security Applications, Springer, pp.3–27.

Leurent, G., Bouillaguet, C. and Fouque, P.A. (2009) Simd is a
Message Digest, Submission to the NIST SHA-3 Competition
(Round 2).

Lipmaa, H. and Moriai, S. (2001) ‘Efficient algorithms for
computing differential properties of addition’, in FSE 2001,
Lecture Notes in Computer Science, Springer, Vol. 2355,
pp.336–350.

Lipmaa, H., Wallen, J. and Dumas, P. (2004) ‘On the additive
differential probability of exclusive Or’, in FSE 2004, Lecture
Notes in Computer Science, Springer, Vol. 3017, pp.317–331.

Mehner, C.E. (2019) Limdolen [online] https://github.com/cem-
/limdolen/blob/master/Documents/Limdolen%20Specification
.pdf (accessed 7 December 2023).

 Finding differential trails on ChaCha by means of state functions 175

Mouha, N., De Canniere, C., Indesteege, S. and Preneel, B. (2009)
‘Finding collisions for a 45-step simplified HAS-V’, in
International Workshop on Information Security Applications,
Springer, pp.206–225.

Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D.,
Preneel, B. and Verbauwhede, I. (2014) ‘Chaskey: an
efficient MAC algorithm for 32-bit microcontrollers’, in
International Conference on Selected Areas in Cryptography,
Springer, pp.306–323.

Mouha, N., Velichkov, V., De Canniere, C. and Preneel, B. (2010)
‘The differential analysis of Sfunctions’, in International
Workshop on Selected Areas in Cryptography, Springer,
pp.36–56.

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J.,
Tack, G. (2007) ‘Minizinc: towards a standard cp modelling
language’, in Bessiere, C. (Ed.): Principles and Practice of
Constraint Programming – CP 2007, pp.529–543, Springer
Berlin Heidelberg, Berlin, Heidelberg.

NIST (2007) Hash Functions – SHA-3 Project [online]
https://csrc.nist.gov/projects/hash-functions/sha-3-project
(accessed 7 December 2023).

NIST (2019) Lightweight Cryptography Standardization
Process [online] https://csrc.nist.gov/projects/lightweight-
cryptography/round-2-candidates (accessed 7 December
2023).

Perron, L. and Furnon, V. (2023) Or-Tools [online]
https://developers.google.com/optimization/
(accessed 7 December 2023).

Rivest, R.L. (1994) ‘The rc5 encryption algorithm’, in
International Workshop on Fast Software Encryption,
Springer, pp.86–96.

Shi, Z., Zhang, B., Feng, D., Wu, W. (2012) ‘Improved key
recovery attacks on reduced-round Salsa20 and ChaCha’, in
Kwon, T., Lee, M. and Kwon, D. (Eds.): Information Security
and Cryptology – ICISC 2012 – 15th International
Conference, Springer, Seoul, Korea, 28–30 November,
Revised Selected Papers, Lecture Notes in Computer Science,
Vol. 7839, pp.337–351, DOI 10.1007/978-3-642-37682-5n24,
https://doi.org/10.1007/978-3-642-37682-5_24.

Velichkov, V., Mouha, N., De Canniere, C., Preneel, B. (2011)
‘The additive differential probability of ARX’, in
International Workshop on Fast Software Encryption,
Springer, pp.342–358.

Velichov, V. (2012) ‘UNAF: a special set of additive differences
with application to the differential analysis of ARX’, in FSE
2012, Lecture Notes in Computer Science, Springer,
Vol. 7549, pp.287–305.

Wheeler, D.J. and Needham, R.M. (1994) ‘TEA, a tiny encryption
algorithm’, in International Workshop on Fast Software
Encryption, Springer, pp.363–366.

Notes
1 While for the XOR-differential trails the difference is injected

in the nonce and in the counter (the fourth row of the state), in
the ModAdd differential trail, we inject the difference in the
full state.

2 In other words Algorithm 2 can be used to attack ChaCha
stream cipher (in a single key scenario), while Algorithm 4
can only be used to attack ChaCha permutation, or in
combination with other techniques.

