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Abstract: We provide fast algorithms to compute the exact additive and XOR differential 
probabilities of ChaCha20 half quarter-round H and, under an independence assumption, an 
approximation of the differential probabilities of the full quarter-round. We give experimental 
evidence of the correctness of our approximation, and show that the independence assumption 
holds better for the XOR differential probability than the additive differential probability. We 
then propose an efficient greedy strategy to maximise differential characteristics for the full 
quarter-round, and use it to determine explicit differential trails for the ChaCha permutation. We 
also provide an MILP model to search for differential trails in ChaCha and compare its 
performance and effectiveness with our method. We believe these results might bring new 
insights in the differential cryptanalysis of ChaCha20 and of similar ARX ciphers. 
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1 Introduction 
Due to their efficiency in software, to their simple 
description, and to their resistance against timing attacks, 
ARX ciphers have become among the most popular 
symmetric constructions. These ciphers are based on only 
three basic bitwise operations: modular addition, bitwise 
rotation, and eXclusive OR, hence the name ARX. 

A non-exhaustive list of the most popular ARX 
symmetric ciphers includes: 

1 Cryptographic permutations such as SPARKLE 
(SCHWAEMM and ESCH) (Beierle et al., 2019), 
candidate to the NIST Lightweight Cryptography 
standardisation process (NIST LWC) (NIST, 2019). 

2 Block ciphers such as the Rivest cipher RC5 (Rivest, 
1994), the South Korean Electronic and 
Telecommunication Research Institute cipher LEA 
(Hong et al., 2013) the NIST LWC candidate Limdolen 
(Mehner, 2019, using a Feistel structure and ARX 
operations to achieve diffusion), the American NSA 
cipher Speck (Beaulieu et al., 2015) standardisation in 
ISO/IEC 29167-22, the tiny encryption algorithm 
(TEA) (Wheeler and Needham, 1994) and Threefish 
(2010), used as Skein internal permutation. 

3 Stream ciphers such as Bernstein’s Salsa20 (Bernstein, 
2005, 2008b) and ChaCha20 (Bernstein, 2008a). The 
latter one is part of the TLS 1.3 standard. 

4 Hash functions such as the SHA-3 Project (NIST, 
2007) finalists (2007–2012) BLAKE2 (Aumasson  
et al., 2013) and Skein (Ferguson et al., 2010), and 
other SHA-3 candidates, Blue Midnight Wish 
(Gligoroski et al., 2009), CubeHash (Bernstein, 2008c), 
Shabal (Bresson et al., 2008), SIMD (Leurent et al., 
2009). 

5 Message authentication codes such as Chaskey (Mouha 
et al., 2014), standardised in ISO/IEC 29192-6. 

A common technique to evaluate the security of a 
symmetric cipher is differential cryptanalysis. In order for 
this technique to be successful, the attacker needs to find 
input/output pairs of a cipher such that they have a fixed 
difference, called differential characteristic, with respect to 
a certain operation. These characteristics must occur more 
or less often than how they would occur in a random 
function. In order to compute the probability for such a 
characteristic to occur, one has to break the cipher in 
smaller components and study how the probability 
propagates through these components. Despite several 
works investigated the problem just described in the case of 
ARX constructions, its accurate calculation still remains an 

open problem for those ARX ciphers with large components 
and/or a large state, as it is the case, for example, for 
Salsa20, ChaCha20, or BLAKE2. 

1.1 Related works 
As mentioned above, one of the first steps to assess the 
security against differential cryptanalysis is to efficiently 
and accurately evaluate the probability with which 
differences with respect to a certain operation propagate 
through the basic components of a cipher and through their 
composition. In the case of ARX ciphers, one might 
consider differences with respect to the three ARX 
operations. In this work, we will only focus on exclusive or 
and modular addition differences. 

The first to determine an exact formula to compute the 
XOR differential probability of modular addition, denoted 
as xdp, in a linear time with respect to the input size, were 
Lipmaa and Moriai (2001). Note that, in general, if n is the 
size of the input, it is not possible to perform such operation 
faster than O(n), as one must read the entire input at least 
[although faster than O(n) is possible if differences are 
sparse, see Mouha et al., 2010]. In 2004, Lipmaa et al. 
obtained the dual result of Lipmaa and Moriai (2001), by 
computing the additive differential probability of the XOR 
operation, denoted by adp⊕. 

In 2005, in his PhD thesis, Daum (2005) collected a set 
of differential properties of bit rotation; in particular he 
defined the additive and the XOR differential probability of 
bitwise rotation, adp and xdp. 

Taking inspiration from the cryptanalysis techniques for 
SHA-1 by De Canniere and Rechberger (2006) and Mouha 
et al. (2009), the results of Lipmaa and Moriai (2001) and 
Lipmaa et al. (2004) were generalised by Mouha et al. 
(2010). In this work, the authors introduced the elegant 
theory of state functions (S-functions in brief). These 
provided a unified framework to compute the XOR 
differential probability of modular addition, even when this 
has more then two inputs, and, consequently, of 
multiplication by a constant, and the additive differential 
probability of the XOR operation. S-functions allow to 
derive differential properties by means of simple matrix 
multiplications. 

Even knowing how the probability with which additive 
or XOR differences propagates through basic operations, 
such as modular addition, XOR or rotation, it is not 
straightforward to compute how this probability propagates 
through compositions of these operations. In particular, 
Velichkov et al. (2011) showed how to compute the additive 
differential probability of what they called the ARX 
operation, i.e., ARX(a, b, r, d) = (( ) ) .a b r d⊕  They 
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also showed that, due to the input/output dependency of the 
three operations, this differential probability differs 
significantly from the simple multiplication of the 
differential probability of each operation. Indeed, the 
accurate calculation of the probability of a differential 
characteristic still remains an open problem for many ARX 
constructions. 

The just mentioned results have been used to mount 
cryptographic attacks to several ciphers. Aumasson et al. 
(2009), use the algorithms provided in Lipmaa and Moriai 
(2001) for computing differential properties of modular 
addition to find modular differentials and mount a 
boomerang attack on Threefish. Since the methods from 
Velichkov et al. (2011) do not scale well with large 
components. In 2012, Velichkov (2012) introduced the 
concept of a UNAF difference, representing a set of 
specially chosen additive differences. This allows them to 
find a three-round differential trail in Salsa stream cipher of 
probability 2–4, and then to mount a key recovery attack on 
Salsa reduced to five rounds, with data complexity of 27 
chosen plaintexts and time complexity of 2,167 encryptions. 
A couple of years later, the results from Lipmaa and Moriai 
(2001), Lipmaa et al. (2004), Mouha et al. (2010) and 
Velichkov et al. (2011) were used by Biryukov et al. to 
instantiate automatic search of differential trails in TEA, 
XTEA, RAIDEN (Biryukov and Velichkov, 2014), and in 
SPECK (Biryukov et al., 2016) block ciphers. 

Table 1 Weight of the best differential trails found using both 
the S-function (for XOR and ModAdd differential 
trails) and the MILP (only for XOR differential trails) 
techniques 

 

Input difference 

nonce, counter nonce, counter full state 

Technique 

S-function MILP S-function 

Round XOR-diff. XOR-diff. ModAdd-diff 

1 3 3 208 
2 37 37 286 
3 157 147 304 
4 349 316 306 

Currently, the best known attacks on ChaCha20 stream 
cipher are derivations of the work of Aumasson et al. 
(2008), which is a differential-linear key recovery attack. 
Most recent variants of this work include (Shi et al., 2012; 
Dey and Sarkar, 2017; Beierlee et al., 2020; Coutinho and 
Neto, 2021; Dey et al., 2022). In these attacks, one round 
XOR-differential trails with average probability 2–4.5 and 
input difference injected in the nonce/counter is used. 
Truncated XOR-differential trails (1-bit input difference and 
1-bit output difference) for three rounds and probability  
2–5.26 are used, e.g., in Aumasson et al. (2008). A  
XOR-differential trail for two rounds and probability 2–24 
was found by Aaraj et al. (2017) by means of MILP. In this 
work the input difference was injected in the full state. 

1.2 Our contribution 
In this work, we slightly generalise the theory of  
S-functions, to be able to compute the exact additive and 
XOR differential probability of ChaCha20 half quarter-
round H. Supposing independence among two consecutive 
applications of H, we are able to compute also the 
differential probability of the full quarter-round. We also 
provide experimental evidence of the correctness of our 
approximation, and show that the independence assumption 
seems to hold better for the xdp rather than the adp. We also 
propose a greedy strategy to maximise differential 
characteristic probability for the full quarter-round, and then 
use this strategy to find explicit XOR and additive 
differential trails up to four rounds. We also implement an 
MILP model to find XOR-differential trails and compare 
the best trails found with the S-function technique. The 
results are summarised in Table 1.1 The code to reproduce 
our results can be found at https://github.com/ 
Crypto-TII/chacha differential trails with s-functions. 

We believe these results might bring new insights in the 
differential cryptanalysis of ChaCha20 and of similar 
constructions. 

1.3 Outline 
In Section 2, we introduce the necessary notions to describe 
our result. We devote from Subsection 3.1 to Subsection 3.3 
to the maximisation of the XDP for ChaCha quarter round, 
while from Subsection 4.2 to Subsection 4.3 we deal with 
the same problem in the ADP case. In Section 5, we provide 
explicit differential trails and simple statistics on the 
minimum, maximum and average quarter round differential 
characteristic probability. In Section 6, we describe an 
MILP model to find differential trails for ChaCha internal 
permutation. Finally in Section 7, we draw the conclusions 
and point to possible future developments of this research. 

2 Preliminaries 
In this section, we first define the notation we adhere to, we 
recall ChaCha20 specifications, formally define the concept 
of XDP and ADP, and the theory of S-functions. 

2.1 Notation 

For every positive integer n, let n  denote the set of n-bits 
words. For all , ,nx y ∈  we use the following notation: 

x[i] ith bit of x 

x ⊕ y bitwise XOR of x and y 

x y  addition modulo 2n of x and y 

x y  subtraction modulo 2n of x and y 

x r  left rotation of x by r bits 

x r  right rotation of x by r bits 



 Finding differential trails on ChaCha by means of state functions 159 

x || y concatenation of x and y 

Moreover, for vectors x, y, ,k
n∈  all the previous 

operations are extended component wise. Also, we write 2 

for the field of two elements, and t for the greatest integer 
not exceeding t. 

2.2 ChaCha stream cipher 
ChaCha20 stream cipher has a state of 512 bits, which can 
be seen as a 4 × 4 matrix whose elements are binary vectors 
of w = 32 bits, i.e. 

{ } ( )
0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 w
0,...,3, 2
0,...,3 2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

.ii j n n
j

x x x x
x x x x

X x
x x x x
x x x x

= ×
=

 
 
 = = ∈
 
 
 

  

Definition 1 (ChaCha half quarter round): Let xi, yi, i = 0, 1, 
2, 3 be w-bit words and r1, r2 ∈ {1, …, w – 1}. Then we 
define ChaCha half quarter round (y0, y1, y2, y3) = 

1 2 0 1 2 3HQR ( , , , )r r x x x x  as follows: 

( )

( )

0 0 1

3 0 3 1

2 3 2

1 2 1 2.

y x x
y y x r
y y x
y y x r

=
= ⊕
=
= ⊕








 

Definition 2 (ChaCha quarter round): Let xi, yi, i = 0, 1, 2, 3 
be w-bit words and r1, r2, r3, r4 ∈ {1, …, w – 1}. Then we 
define ChaCha quarter round 

( ) ( )0 1 2 3 0 1 2 3, , , QR , , ,y y y y x x x x=  

as follows: 

( ) ( )
( ) ( )

1 2

3 4

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

, , , HQR , , ,
, , , HQR , , ,

r r

r r

y y y y x x x x

y y y y y y y y

′ ′ ′ ′ =
′ ′ ′ ′=

 

We show in Figure 1 a schematic drawing of Chacha half 
quarter round. The permutation used in ChaCha20 stream 
cipher performs 20 rounds or, equivalently, ten double 
rounds. Two consecutive rounds (or a double round) of 
ChaCha permutation consist in applying the quarter round 
four times in parallel to the columns of the state (first 
round), and then four times in parallel to the diagonals of 
the state (second round). More formally: 

 

Definition 3 (ChaCha column/diagonal round):  
We let { } { }0,...,3 0,...,3, ,

0,...,3 0,...,3
andi ii j i j

j j
X x Y y= =

= =
= =  be two n × n 

matrices with entries in w
2 .  

A column round Y = C(X) is defined as follows, with  
i = 0, 1, 2, 3: 

( ) ( )0, 1, 2, 3, 0, 1, 2, 3,, , , QR , , , .i i i i i i i iy y y y x x x x=  

Figure 1 The ChaCha half quarter round diagram 

 

A diagonal round Y = D(X) is defined as follows, for i = 0, 
1, 2, 3 and where each subscript is computed modulo n = 4: 

( ) ( )0, 1, +1 2, +2 3, +3 0, 1, +1 2, +2 3, +3, , , QR , , , .i i i i i i i iy y y y x x x x=  

2.3 Differential probabilities 

Definition 4: Let F be a function from k h
n n→   and let 

(∆x, ∆y) ∈ .k h
n n×   The XOR differential probability 

(XDP) of F with respect to the input/output pair (∆x, ∆y) is 
defined as 

xdp (Δ Δ ) Pr [ ( Δ ) ( ) Δ ],
kn

F F F
∈

→ = ⊕ = ⊕
x

x y x x x y


 

where the probability is meant for an uniformly distributed 
random variable .k

n∈x   Similarly, the additive differential 
probability (ADP) of F with respect to the input/output pair 
(∆x, ∆y) is defined as 

adp (Δ Δ ) Pr [ ( Δ ) ( ) Δ ].
kn

F F F
∈

→ = =
x

x y x x x y


   

In general, there is no simple way to express the differential 
probability of the composition of two functions in terms of 
the differential probabilities of the single functions. 
However, we have the following result: 

Lemma 1: Let : and :k h h
n n n nF G→ →      be two 

functions, and let (∆x, ∆z) .k
n n∈ ×    Assume that: 

1 For an uniform random variable ,k
n∈x   the events 

F(x  ∆x) = F(x) ∆y and G(F(x) ∆y) = G(F(x))  

∆z are independent, for every ∆y ∈ k. 

2 
Pr [ ( ( ) Δ ) ( ( )) Δ ]

Pr [ ( Δ ) ( ) Δ ].
kn

hn

G F G F

G G
∈

∈

=

= =
x

w

x y x z

w y w z




 

 
 

Then we have 

Δ

xdp (Δ Δ ) xdp (Δ Δ )xdp (Δ Δ ),
kn

G F F G

∈

→ = → →
y

x z x y y z


 (1) 
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and 

Δ

adp (Δ Δ ) adp (Δ Δ )adp (Δ Δ ).
kn

G F F G

∈

→ = → →
y

x z x y y z


 (2) 

Proof: Using the definition of XDP and the assumptions, we 
get 

Δ

Δ

Δ

xdp (Δ Δ ) Pr[ ( ( Δ )) ( ( )) Δ ]

Pr[ ( Δ ) ( ) Δ ( ( ) Δ )

( ( )) Δ ]

Pr[ ( Δ )) ( ) Δ ]Pr[ ( ( ) Δ )

( ( )) Δ ]

Pr[ ( Δ )) ( ) Δ ]Pr[ ( Δ )

( ) Δ ]

xdp (Δ Δ )

kn

kn

kn

G F

F

G F G F

F F G F

G F

F F G F

G F

F F G

G

∈

∈

∈

→ = =

= = ∧

=

= =

=

= =

=

= →







y

y

y

x z x x x z
x x x y x y

x z
x x x y x y

x z
x x x y w y

w z
x y









 

  



  



  



Δ

xdp (Δ Δ ),
kn

G

∈

→
y

y z


 

as claimed. A similar reasoning gives the result on the 
ADP.□ 

Even if F and G do not satisfy the two assumptions of 
Lemma 1, it can be that (1) and (2) are good approximations 
for the XDP and ADP of the composition F ○ G. In general, 
(1) and (2) can be used as heuristic formulas for the 
differential probabilities of F ○ G. 

Definition 5: Given two functions : k h
n nF →   and 

: ,h
n nG →    we say that F and G are ‘independent’ if 

(1) and (2) are good approximations for the differential 
probabilities of F ○ G. 

Figure 2 Representation of the ith block of an S-machine 

 

2.4 S-functions 
This section contains the preliminaries on S-functions (short 
for ‘state functions’) needed for the computation of the ADP 
of half quarter round performed in Subsection 4.1. Actually, 
we shall develop a bit more theory than the one strictly 
necessary for Subsection 4.1. 

S-functions were introduced in Mouha et al. (2010) and 
were already applied to the differential cryptanalysis of 
some ARX primitives (Mouha et al., 2010; Velichkov et al., 
2011). Here we redefine S-functions in a slightly more 
general way, which is better suited for our purposes. 
Throughout this section, let n and k be fixed positive 
integers. 

Definition 6: An S-machine is a (n + 2)-tuple (, sin, f0, …, 
fn–1) consisting of: 

• a finite set of states  

• an initial state sin ∈  

• n partial functions 22: k
if × → ×   called 

transitions functions. 

An S-machine can be represented as a device built of n 
blocks labelled by i = 0, …, n – 1 (see Figure 2). Starting 
from i = 0, the ith block takes as input the current state si and 
the bits x1[i], …, xk[i]. If (si, x1[i], …, xk[i]) ∈ dom(fi) then 
the block returns as output y[i] and the next state si+1, which 
is fed to the (i+1)th block, if any. If (si, x1[i], …, xk[i]) ∉ 
dom(fi) then the computation stops. Considering when the 
computation is performed through all the n blocks leads to 
the definition of S-functions. 

Definition 7: An S-function F is a partial function 
2 2( )n k n→   such that there exists an S-machine (, sin, f0, 

…, fn–1) with the following property: For every (x1, …, xk) ∈ 
dom(F) there exist some states s0 = sin, s1, …, sn ∈  such 
that 

( ) ( )
( ) ( )

1

+1 1

, [ ], ..., [ ] ,
, [ ] , [ ], ..., [ ] for 0,1, ..., 1,

i k i

i i i k

s x i x i dom f
s y i f s x i x i i n

∈

= = −
 

where y = F(x1, …, xk). In other words, an S-function is a 
partial function that is computed by an S-machine. 

Remark 1: Our definition of S-function differs from the one 
given in Mouha et al. (2010) in two ways. First, in Mouha  
et al. (2010), the transition functions fi for i = 0, …, n – 1 
are all equal to a single function f, although a generalisation 
with different transition functions is already suggested. 
Second, and more important, our definition lets the 
transition functions be partial functions, while in Mouha  
et al. (2010) only total functions are considered. 

Figure 3 The ith block of the XOR of two S-functions 

 

It is easy to see that, among the functions 22( )n k →   all 
coordinate projections (x1, …, xk) ,jx  with j ∈ {1, …, 
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n}, and all constant functions (x1, …, xk) ,c  with 2 ,nc ∈  
are S-functions. The next lemma shows that the set of  
S-functions is closed by addition and XOR. 

Lemma 2: If F and G are S-functions, then F ⊕ G and 
F G  are S-functions. 

Figure 4 The ith block of the addition of two S-functions 

 

Proof: Let (, sin, f0, …, fn–1) and (, tin, g0, …, gn–1) be the 
S-machines of F and G, respectively. The S-machine 
computing F ⊕ G has set of states ,×   initial state (sin, 
tin), and ith block built from fi and gi as shown in Figure 3. 
The S-machine computing F G  is only slightly more 
complex, because it has to take care of the propagation of 
carries. It has set of states 2 ,× ×   initial state (sin, tin, 0), 
and ith block built from fi and gi as shown in Figure 4.□ 

Remark 2: In general, rotations cannot be computed by  
S-functions. Indeed, already the simple rotation 1 1x   
cannot be computed by an S-function, since the least 
significant bit of 1 1x   is x1[n – 1], which is not a 
function of x1[0], …, xk[0]. 

Definition 8: Let F be an S-function with S-machine (, sin, 
f0, …, fn–1), and let i ∈ {0, …, n – 1} and 2.γ∈  Also, let 
s1:= sin, s2, …, sh be all the elements of .  The ith transition 
matrix of F is the h × h matrix Ai,γ = , 1 ,( )j j ha ≤ ≤   where ,ja   
is equal to the number of 1 2, ..., kχ χ ∈  such that (sj, χ1, …, 
χk) ∈ dom(fj) and ( , )s γ =  fj(sj, χ1, …, χk). 

The next theorem is the key result about counting solutions 
of equations involving S-functions. 

Theorem 1: Let F be an S-function and let 2 .ny ∈  Then, 
we have that the number of (x1, …, xk) ∈ dom(F) such that 
F(x1, …, xk) = y is equal to 

0, [0] 1, [1] 1, [ 1]y y n y nLA A A C− −  

where L:= (1, 0, …, 0) is a row vector of length 
, (1, 1, ..., 1)h C =   is a column vector of length h, and Ai,γ 

are the transition matrices of F. 

Proof: Let (, sin, f0, …, fn–1) be the S-machine of F and let 
s1:= sin, s2, …, sh be all the states in .  We build a directed 
graph G in the following way. The vertices of G are the 
pairs (i, sj), where i = 0, …, n – 1 and j = 1, …, h.  
For all i = 0, …, n – 2, 1 2, 1, ..., and , ..., ,kj h χ χ= ∈   

1if ( , [ ]) ( , , ..., )i j ks y i f s χ χ=  then we draw an edge from 
(i, sj) to ( +1, ).i s  (Note that we can draw multiple edges 
between two vertices). Hence, by the definition of  
S-function, the (x1, …, xk) ∈ dom(F) such that F(x1, …, xk) 
= y are in bijection with the direct paths from (0, s1) to one 
of (n, s1), …, (n, sh). Moreover, Ai,y[i] is the adjacency matrix 
of the subgraph consisting of vertices (i, sj), ( +1, ).i s  By a 
well-known result of graph theory (Chittenden, 1947), the 
( , )j   entry of the matrix B:= A0,y[0]A1,y[1]∙∙∙ An–1,y[n–1] is 
equal to the number of direct paths from (0, sj) to ( , ).n s  
Then the claim follows since LBC is equal to the sum of the 
elements in the first row of B.□ 

Remark 3: More generally, the (i, j) entry of the matrix 

0, [0] 1, [1] 1, [ 1]y y n y nA A A − −  

is equal to the number of (x1, …, xk) ∈ dom(F) that leads the 
S-machine associated to F from state i to state j. 

2.5 Rotate, add, and rotate back 

For every integer r ∈ [0, n), let us define the operator 
r
  

by 

:
r

x y x y=
  
   

for all , ,nx y ∈ where the arrows denote left/right 
rotations by r bits. Letting x = xL || xR and y = yL || yR, where 

, and , ,L L r R R n rx y x y −∈ ∈   it follows that 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ,

r
L R L R

R R R L

R R L L

L L R R

x y x x y y

x x y y

x y c x y

x y x y c

=

=

=

=

 





 



  

  

 

where c:= (xL + yL) = 2r. Hence, the computation 
r

x y

  

proceeds almost as the addition modulo 2n addition of x and 
y, with the only differences that: there is no carry 
propagation from the (n – r)th digit; and the carry c of the 
nth digit is added to the least significant digit. In particular, 

note that 
r

x y

  cannot be computed by an S-function, since 

its least significant bit depends on c, which in turn depends 
on the bits of x and y after the (n – r)th position. However, 
assuming that we know the value of c in advance, we can 

compute 
r

x y

  by an S-machine and check at the end that 

the nth carry is actually equal to c. This would be our 
strategy to prove Lemma 6 later. 
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3 XOR differential probability of ChaCha round 
In this section, we first give an exact formula for the XOR 
differential probability of the half quarter round of ChaCha. 
Then we provide a heuristic formula for the XDP of 
ChaCha quarter round, under the assumption that the two 
half quarter rounds are ‘independent’. Finally, we illustrate 
a greedy strategy to find the best XDP of ChaCha full 
round. 

3.1 XDP of ChaCha half quarter round 
Here, we give a formula for the XOR differential 
probability of the half quarter round of ChaCha. First, we 
need a formula for the XDP of modular addition. This was 
computed in Mouha et al. (2010) using S-functions. 

First let us define the matrices that are going to be used 
in the next lemma: 

000 001 011 111
2 0 0 0 1 1 0 0
0 0 1 1 0 0 0 2

A A A A       
= = = =       
       

 

with the remaining matrices given by A010 = A100 = A001 and 
A101 = A110 = A011, and L = (1 0), C = (1 1)T. 

Lemma 3: Let Aw, L, and C be the matrices defined above. 
Then, we have that for all 0 1Δ , Δ , Δ :nx x y ∈  

( )0 1 [0] [1] [ 1]xdp Δ , Δ Δ 2 ,n
w w w nx x y LA A A C−

−→ =   

where w[i] :=∆x0[i] || ∆x1[i] || ∆y[i] for i = 0, 1, …, n – 1. 

Proof: See [27, Theorem 4]. Note that, our Aw, L, C are the 
transposes of the Aw, L, C in Lipmaa et al. (2004), hence the 
order of the product is reversed.□ 

Now, we express the XDP of the half quarter round in terms 
of the XDPs of the modular additions. 

Lemma 4: For all 4Δ , Δ ,nx y ∈  we have 

1 2HQRxdp (Δ Δ ) 0r r x y→ ≠  

only if 

0 3 3 1Δ Δ Δy x y r⊕ =   (3) 

2 1 1 2Δ Δ Δ .y x y r⊕ =   (4) 

In such a case 

( )
( )

1 2HQR
0 1 0

3 2 2

xdp (Δ Δ ) xdp Δ , Δ Δ
xdp Δ , Δ Δ .

r r x y x x y
y x y

→ = →

⋅ →




 

Proof: By the definition of 1 2,HQR ,r r we have that 

1 2 1 2, ,HQR ( Δ ) HQR ( ) Δr r r r⊕ = ⊕x x y y  

is equivalent to 

( ) ( ) ( )0 0 1 1 0 1 0Δ Δ Δx x x x x x y⊕ ⊕ = ⊕   (5) 

( ) ( )( ) ( )( )0 0 3 3 1 0 3 1 3Δ Δ Δy y x x r y x r y⊕ ⊕ ⊕ = ⊕ ⊕   (6) 

( ) ( ) ( )3 3 2 2 3 2 2Δ Δ Δy y x x y x y⊕ ⊕ = ⊕   (7) 

( ) ( )( ) ( )( )2 2 1 1 2 2 1 2 1Δ Δ Δ .y y x x r y x r y⊕ ⊕ ⊕ = ⊕ ⊕   (8) 

Equations (6) and (8) simplify at once to (3) and (4), 
respectively, which do not depend on x and y. Therefore, 
they are necessary conditions for the XDP to be non-zero. 

Since the map 4 4 :n n→ x z   given by 

( )( )

0 0

1 1

2 2

3 0 1 3 1

z x
z x
z x
z x x x r

=
=
=

= ⊕ 

 

is a bijection, we can make the change of variable x z  
without changing the XDP, and equations (5) and (7) turn 
into 

( ) ( ) ( )0 0 1 1 0 1 0Δ Δ Δz x z x z z y⊕ ⊕ = ⊕   (9) 

( ) ( ) ( )2 3 3 2 2 3 2Δ Δ Δ .z y z x z z y⊕ ⊕ = ⊕   (10) 

Note that (9) and (10) are independent, since the first is an 
equation in z0, z1 while the second is an equation in z2, z3. 
The claim follows.□ 

At this point, using Lemma 3 and Lemma 4, the XDP of 
ChaCha half quarter round can be computed in time O(n). 

3.2 XDP of ChaCha quarter round 
The next lemma provides a heuristic formula for the XDP of 
ChaCha quarter round, under the assumption that the two 
half quarter rounds are ‘independent’. 

Lemma 5: Assuming that 1 2 3 4, ,HQR , and HQRr r r r  are 
‘independent’ (see Definition 5), for every 4Δ , Δ n∈x z   we 
have 

( )
( )
( )
( )

HQR
0 1 0

3 2 2

0 1 0

3 2 2

xdp (Δ Δ ) xdp Δ , Δ Δ
xdp Δ , Δ Δ
xdp Δ , Δ Δ
xdp Δ , Δ Δ ,

x x y
y x y
y y z
z y z

→ = →

⋅ →

⋅ →

⋅ →

x z 







 (11) 

where 4Δ n∈y   is given by 

( )
( )
( )
( )

0 3 3 1

1 2 1 4

2 1 1 2

3 0 3 3

Δ Δ Δ
Δ Δ Δ
Δ Δ Δ
Δ Δ Δ .

y x y r
y z z r
y x y r
y z z r

= ⊕

= ⊕
= ⊕

= ⊕






 (12) 

Proof: Since 3 4 1 2, ,QR HQR HQR ,r r r r=   by the assumption 
that 3 4 1 2, ,HQR and HQRr r r r  are ‘independent’ we have 

,1 2

,3 4

HQRQR

Δ

HQR

xdp (Δ Δ ) xdp (Δ Δ )

xdp (Δ Δ ).

r r

kn

r r

∈

→ = →

→


y

x z x y

y z
  (13) 
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Furthermore, from the first part of Lemma 4, we get that the 
addend of (13) is non-zero only if it holds the following 
system of equations 

0 3 3 1

2 1 1 2

0 3 3 1

2 1 1 2

Δ Δ Δ
Δ Δ Δ
Δ Δ Δ
Δ Δ Δ ,

y x y r
y x y r
z y z r
z y z r

⊕ =
⊕ =
⊕ =
⊕ =






 

which solved gives a unique value of ∆y by (12). Then the 
claim follows from the second part of Lemma 4.□ 

For small word sizes n = 5, 6, 7, 8, and for a random 
sample of ∆x’s and ∆y’s, we compared the values of the 
XDP of the quarter round (with r1 = 4, r2 = 3, r3 = 2, r4 = 1) 
given by the heuristic formula of Lemma 5 with the exact 
values computed by brute force. Actually, since the XDP is 
zero for most of the choices of ∆x and ∆y, we generated ∆x 
randomly, then we generated a random 4

n∈x   and we 
picked ∆y = QR(x ⊕ a∆x) ⊕ QR(x), which guarantees that 
the XDP is non-zero. We collect the results in Table 2 and 
Figure 5, which shows the distribution of L = log(exact 
value of xdpHQR/ heuristic value of xdpHQR), given by 
Lemma 5 as the input/output differences ranges over our 
16,000 samples. For example, the top left graph shows that 
slightly less than 5,000 input/output differences have L in  
[–1, –0.5]. Notice that the reason for the deviation is due to 
the lack of independence of 1 2 3 4, ,HQR and HQR .r r r r  

Table 2 E is the average factor which the heuristic formula of 
Lemma 5 is off from the exact XDP, and σ is the 
standard deviation (sample size N = 16,000) 

n 5 6 7 8 

E 0.67 0.63 0.60 0.57 
σ 0.52 0.56 0.61 0.6 

3.3 Maximising the XDP of the half quarter round 
We now illustrate an algorithm, based on the previous 
results, that takes as input 4Δ n∈x   and returns as output 

4Δ n∈y   such that ,1 2HQRxdp (Δ Δ )r r →x y  is high. 
Assuming the independence of the half quarter rounds, this 
algorithm can then be applied multiple times to obtain high 
XDPs for the quarter round, or even iterated of the quarter 
round up to a full round. 

First, in light of Lemma 3, we have Algorithm 1,  
which is a greedy algorithm that takes as input 

0 1,Δ Δ and ,n nx x c∈ ∈   and returns as output Δ ny ∈  
and p such that p = xdp (∆x0, ∆x1 → ∆y) is high. If the 
parameter c is changed, then a different ∆y is returned (c = 0 
means that ∆y is obtained in a completely greedy way). This 
is to avoid being trapped in a local maximum. 

 

 

Figure 5 Distribution of the logarithm of the ratio between the 
XDP given by Lemma 5 and the correct value of the 
XDP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8  
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 5 Distribution of the logarithm of the ratio between the 
XDP given by Lemma 5 and the correct value of the 
XDP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8  
(continued) (see online version for colours) 

 
(d) 

Then, according to Lemma 4, to obtain a high XDP for the 
half quarter round two calls to Algorithm 1 are sufficient, as 
done in Algorithm 2. Note that Algorithm 2 has two 
parameters c0, c1 that when changed give different values of 
∆y. 

Algorithm 1: 

1 Function Greedy_XDP_Add(∆x0, ∆x1, c): 
2  ∆y ← 0 (n bits word) 
3  B ← 4 × 4 identity matrix 
4  p ← 1 
5  for i = 0, 1, …, n – 1 do 
6   

0 10 Δ [ ] Δ [ ] 0x i x iB BA←  

7   
0 11 Δ [ ] Δ [ ] 1x i x iB BA←  

8   p0 = 4–(i+1)LB0C 
9   p1 = 4–(i+1)LB1C 
10   if (p0 ≥ p1 and c[i] = 0) or (p0 < p1 and c[i] = 1) then 
11     ∆y[i] ← 0 
12     B ← B0 
13     p ← p0 
14   else 
15     ∆y[i] ← 1 
16     B ← B1 
17     p ← p1 

18   return ∆y, p 

Algorithm 2: 

1 Function Greedy_XDP_HQR(r1, r2, ∆x0, ∆x1, ∆x2, ∆x3, c0, 
c1): 

2  ∆y0, p0 ← Greedy_XDP_Add (∆x0, ∆x1, c0) 
3  3 3 0 1Δ (Δ Δ )y x y r← ⊕   

4  ∆y2, p1 ← Greedy_XDP_Add (∆y3, ∆x2, c1) 

5  1 1 2 2Δ (Δ Δ )y x y r← ⊕   

6  p ← p0p1 
7  return ∆y0, ∆y1, ∆y2, ∆y2, p 

4 Additive differential probability of ChaCha 
round 

In this section we illustrate the results on the ADP analog to 
the results on the XDP of the previous section. 

4.1 ADP of ChaCha half quarter round 
Here, we give a formula for the additive differential 
probability of the half quarter round of ChaCha. 

First, let us define the matrices that are going to be used 
in the next lemma. These are 

000 001

010

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0

A A

A

   
   
   
   
   
   = =   
   
   
   
      
   

= 011

100

0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 0

A

A

   
   
   
   
   
   =   
   
   
   
      
   

= 101

1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

A

   
   
   
   
   
   =   
   
   
   
      
     
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110 111

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0

A A

R

   
   
   
   
   
   = =   
   
   
   
      
   

=

( ) ( )
( ) ( )

0 1

0 1

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1T T

L L

C C

 
 
 
 
 
 
 
 
 
 
  
 

= =

= =

 

Lemma 6: Let Aw, Li, Ci, and R be the matrices defined as 
above. For all constants 0 1 01, , na a a ∈  and every integer  
r ∈ [0, n), the number of solutions 2

0 1( , ) nx x ∈  of the 
equation 

( ) ( ) ( )0 0 1 1 0 1 01
r

x a x a x x a⊕ =


     (14) 

is equal to 

[0] [1] [ 1] [ ] [ 1]
{0,1}

,i w w w n r w n r w n i
i

L A A A RA A C− − − −
∈
    

where w[i]: = a0[i] || a1[i] || a01[i] for i = 0, 1, …, n – 1. 

Proof: The result follows from the theory developed in 
Subsection 2.4. First, we consider 

( ) ( ) ( )( )0 0 1 1 0 1 01 ,y x a x a x x a= ⊕ ⊕     (15) 

Noticing that y = 0 gives (14) with 
r
  replaced by .  We 

represent the states of the S-function associated to (15) by 
the 3-bits words c0 ||c1|| c01, where c0, c1, c01 are the carries 
in the first, second, and third addition of (15), respectively. 
We identify each state c0 ||c1|| c01 with the corresponding  
3-bit integer 4c0 + 2c1 + c01. The S-function for (15) is 
defined by the recurrences 

( ) ( )
( )

( )( )

0 0 0 1

0 1 01 01

0 0 0 0

1 1 1 1

01 0 1 01 01

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] ,
[ ]+ [ ]+ / 2 ,
[ ]+ [ ] + / 2 ,

[ ] [ ] + [ ]+ 2 ,

i iy i x i a i c x i a i c
x i x i a i c

c x i a i c
c x i a i c

c x i x i a i c

← ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

←   
←   

 ← ⊕ 

 

The first of which can be simplified to y[i] ← a0[i] ⊕ a1[i] 
⊕ a01[i] ⊕ c0 ⊕ c1 ⊕ c01. By Theorem 1, the number of 

2
0 1( , ) nx x ∈  such that y = 0 is equal to 

[0] [1] [ 1]w w w nLA A A C−  

where L:= (1, 0, …, 0) and (1, 1, ..., 1)C =  are vectors of 
length 8 (the number of states), and the (i, j) entry of 

0 1 01Aα α α  is equal to the number of 2
0 1 2( , )χ χ ∈  such that 

( )0 1 01 0 1 01 0 0 0 00, + + / 2 ,c c c c χ c′  ⊕ ⊕ ⊕ ⊕ ⊕ = =  α α α α  

( ) ( )( )1 1 1 1 01 0 1 01 01+ + / 2 , + + / 2 ,c χ c c χ χ c ′ ′ = = ⊕   α α  

with i = 4c0 + 2c1 + c01 and 0 1 014 + 2 + .i c c c′ ′ ′=  Finally, in 
light of Remark 3 and Subsection 2.5, we introduce the 

matrices R, Li, and Ci to handle :
r
  the projection matrix R 

has the purpose to not propagate the carry c01 of the (n – r)th 
digit; and Li, Ci have the purpose of counting only the 

0 1( , ) nx x ∈  such that the initial and final state have the 
same c01.□ 

Now define 0 1 0 1( , ) : ( )rJ x x x x r= ⊕   for every 
integer r ∈ [0, n) and every 0 1, .nx x ∈  

Lemma 7: Let Aw, Li, Ci, and R be the matrices of Lemma 6. 
For all 2Δ , Δ ,n n∈ ∈x y   and every integer r ∈ [0, n), we 
have 

[0] [1] [ 1] [ ]
{0,1}

[ 1]

adp (Δ Δ ) 4

,

rJ n
i w w w n r w n r

i

w n i

x y L A A A RA

A C

−
− − −

∈

−

→ =  


 

where 0 1[ ] : Δ [ ] Δ [ ] (Δ )[ ]w i x i x i y r i=   for i = 0, 1, …,  
n – 1. 

Proof: Noting that 0 0 1 1 0 1( Δ , Δ ) ( , ) Δr rJ x x x x J x x y=    

is equivalent to 0 0 1 1 0 1( Δ ) ( Δ ) ( ) (Δ ),
r

x x x x x x y r⊕ = ⊕


    
the claim follows immediately from Lemma 6. □ 

Lemma 8: For all 4Δ , Δ ,n∈x y   we have 

,1 2HQRadp (Δ Δ ) 0r r x y→ ≠  

Only if 

0 1 0Δ Δ Δx x y=  (16) 

3 2 2Δ Δ Δ .y x y=  (17) 

In such a case 

( )
( )

,1 2 1

2

HQR
0 3 3

1 2 1

adp (Δ Δ ) adp Δ , Δ Δ
adp Δ , Δ Δ .

r r r

r

J

J

y x y
x y y

→ = →

⋅ →

x y
 (18) 

Proof: By the definition of 1 2,HQR ,r r  we have that 

1 2 1 2, ,HQR ( Δ ) HQR ( ) Δr r r r=x x y y   

is equivalent to 
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( ) ( ) ( )0 0 1 1 0 1 0Δ Δ Δx x x x x x y=      (19) 

( ) ( )( ) ( )( )0 0 3 3 1 0 3 1 3Δ Δ Δy y x x r y x r y⊕ = ⊕     (20) 

( ) ( ) ( )3 3 2 2 3 2 2Δ Δ Δy y x x y x y=      (21) 

( ) ( )( ) ( )( )2 2 1 1 2 2 1 2 1Δ Δ Δ .y y x x r y x r y⊕ = ⊕     (22) 

Equations (19) and (21) simplify at once to (16) and (17), 
respectively, which do not depend on x and y. Therefore, 
they are necessary conditions for the adp to be non-zero. 

Since the map 4 4 :n n→ x z   given by 

( )( )( )0 0 1 1 1 2 0 1 3 1 2 3 3, , ,z x x z x z x x x r x z x= = = ⊕ =    

is a bijection, we can make the change of variable x z  
without changing the adp, and equations (20) and (22) turn 
into 

( ) ( )( ) ( )( )0 0 3 3 1 0 3 1 3Δ Δ Δz y z x r z z r y⊕ = ⊕     (23) 

( ) ( )( ) ( )( )1 1 2 2 2 1 2 2 1Δ Δ Δ .z x z y r z z r y⊕ = ⊕     (24) 

Note that (23) and (24) are independent, since the first is an 
equation in z0, z3 while the second is an equation in z1, z2. 
Moreover, they can be rewritten as: 

( ) ( )( ) ( )1 10 3 0 3 0 3 3, Δ , Δ , Δr rJ z z y x J z z y=   

( ) ( )( ) ( )2 21 2 1 2 1 2 1, Δ , Δ , Δ ,r rJ z z x y J z z y=   

which are the equations in the ADPs of 1 2andr rJ J  and the 
claim follows.□ 

At this point, using Lemma 7 and Lemma 8, the ADP of 
ChaCha half quarter round can be computed in time O(n). 

4.2 ADP of ChaCha quarter round 
The next lemma provides a heuristic formula for the ADP of 
ChaCha quarter round, under the assumption that the two 
half quarter rounds are ‘independent’. 

Lemma 9: Assuming that 1 2 2 3, ,HQR and HQRr r r r  are 
‘independent’ (see Definition 5), for every 4Δ , Δ n∈x z   we 
have 
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( )
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J

J

J
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⋅ →

x z

 (25) 

where 4Δ n∈y   is given by 

0 0 1

1 0 0 1

2 2 3

3 2 3 2

Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ
Δ Δ Δ Δ .

y x x
y z x x
y z z
y z z x

=
=
=
=



 



 

 (26) 

Proof: Since 3 4 1 2, ,QR HQR HQR ,r r r r=   by the assumption 
that 3 4 1 2, ,HQR and HQRr r r r  are ‘independent’, we have 

, ,1 2 3 4HQR HQRQR

Δ

adp (Δ Δ ) adp (Δ Δ )adp (Δ Δ ).r r r r

kn∈

→ = → →
y

x z x y y z


 (27) 

Furthermore, from the first part of Lemma 8, we get that the 
addend of (27) is non-zero only if it holds the following 
system of equations 

0 1 0 3 2 2

0 1 0 3 2 2

Δ Δ Δ ,Δ Δ Δ ,
Δ Δ Δ ,Δ Δ Δ ,

x x y y x y
y y z z y z

= =
= =

 

 
 

which solved gives a unique value of ∆y by (26). Then the 
claim follows from the second part of Lemma 8.□ 

Table 3 E is the average factor which the heuristic formula of 
Lemma 9 is off from the exact ADP, and σ is the 
standard deviation (sample size N = 15,000) 

n 5 6 7 8 

E 0.43 0.31 0.31 0.27 
σ 0.85 0.97 1.02 1.11 

For small word sizes n = 5, 6, 7, 8, and for a random sample 
of ∆x’s and ∆y’s, we compared the values of the ADP of the 
quarter round (with r1 = 4, r2 = 3, r3 = 2, r4 = 1) given by the 
heuristic formula of Lemma 9 with the exact values 
computed by brute force. Actually, since the ADP is zero 
for most of the choices of ∆x and ∆y, we generated ∆x 
randomly, then we generated a random 4Δ n∈x   and we 
picked Δ HQR( Δ ) HQR( ),=y x x x   which guarantees 
that the ADP is non-zero. We collect the results in Table 3 
and Figure 6. 

Figure 6 Distribution of the logarithm of the ratio between the 
ADP given by Lemma 9 and the correct value of the 
ADP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8  
(see online version for colours) 

 
(a) 
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Figure 6 Distribution of the logarithm of the ratio between the 
ADP given by Lemma 9 and the correct value of the 
ADP, for (a) n = 5, (b) n = 6, (c) n = 7, (d) n = 8  
(continued) (see online version for colours) 

 
(b) 

 
(c) 

 
(d) 

4.3 Maximising the ADP of the half quarter round 
Now, we illustrate an algorithm, based on the previous 
results, that given as input 4Δ n∈y   returns as output 

4Δ n∈x   such that ,1 2HQRadp (Δ Δ )r r →x y  is high. Note that 
this works backward (it takes as input ∆y and returns ∆x) 
respect to the algorithm given in Subsection 3.3 to 
maximise the XDP. Assuming the independence of the half 
quarter rounds, this algorithm can then be applied multiple 
times to obtain high ADPs for the quarter round, or even 
iterated of the quarter round up to a full round. 

First, in light of Lemma 7, we have Algorithm 3,  
which is a greedy algorithm that takes as input 

1Δ , Δ andn nx y c∈ ∈   and returns as output 0Δ nx ∈  
and p such that 0 1adp (Δ , Δ Δ )rJp x x y= →  is high. 

Then, according to Lemma 8, to obtain a high ADP for 
the half quarter round two calls to Algorithm 3 are 
sufficient, as done in Algorithm 4. Note that Algorithm 4 
has two parameters c0, c1 that when changed give different 
values of ∆x. 

Remark 4: Taking as input ∆y and returning as output ∆x, 
instead of the contrary, might seem unnatural. We do so 
because, once ∆y is fixed, the two factors of the product for 
the ADP of half quarter round (18) are independent 
functions of ∆x1 and ∆x3 and consequently they can be 
independently maximised using Algorithm 3. On the 
contrary, if ∆x is fixed, the two factors are not independent 
functions of ∆y0, ∆y3 and ∆y1, ∆y2, because equations (16) 
and (17) have to be taken into account, and consequently 
they cannot be independently maximised. 

Algorithm 3: 

1 Function Greedy_ADP_J(r, ∆x1, c): 
2  ∆x0 ← 0 (n bits word) 
3  B ← 8 × 8 identity matrix 
4  p ← 1 
5  for i = 0, 1, …, n – 1 do 
6   

10 0 Δ [ ] (Δ )[ ]x i y r iB BA←   

7   
11 1 Δ [ ] (Δ )[ ]x i y r iB BA←   

8   if i = n – r – 1 then 
9    B0 ← B0R 
10    B1 ← B1R 
11   end 
12   p0 = 4–(i+1)(L0B0C0 + L1B0C1) 
13   p1 = 4–(i+1)(L0B1C0 + L1B1C1) 
14   if (p0 ≥ p1 and c[i] = 0) or (p0 < p1 and c[i] = 1) then 
15    ∆x0[i] ← 0 
16    B ← B0 
17    p ← p0 
18   else 
19    ∆x0[i] ← 1 
20    B ← B1 
21    p ← p1 
22   end 
23  end 
24  return ∆x0, p 
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Algorithm 4: 

1 Function Greedy_ADP_HQR(r1, r2, ∆y0, ∆y1, ∆y2, ∆y3, c0, 
c1): 

2  ∆x3, p0 ← Greedy_ADP_J (r1, ∆y0, ∆y3, c0) 
3  ∆x1, p1 ← Greedy_ADP_J (r2, ∆y2, ∆y1, c1) 
4  0 0 1Δ Δ Δx y x←   

5  2 2 3Δ Δ Δx y y←   

6  p ← p0p1 
7  return ∆x0, ∆x1, ∆y2, ∆x2, p 

5 Experimental results 
In this section, we provide some experimental results. In 
particular, we show the best differential characteristics for 
ChaCha half quarter round that can be found with our 
method. We also provide explicit differential trails and their 
corresponding probability for ChaCha permutation. 

We first show how close Algorithm 2 is to find a 
characteristic with maximum probability. For each 24w input 
difference, we computed the maximum xdp by checking 
through all possible output differences and compared it to 
the value returned by Algorithm 2. The complexity of this 
approach for the xdp is 28w and hence we were able to run 
this experiment only for 4-bit words. We repeated the same 
experiment for the adp. To compute the xdp we used the 
result from Lemma 4, while for the adp we used Lemma 8. 
In Table 4, we report the results of the experiment. The row 
‘#matches’ reports the number of times that the greedy 
strategy returns the actual best probability, while the 
‘%matches’ is #matches∙100/24w. In the xdp case, the greedy 
algorithm returns the best probability about 16% of the 
time, and a probability within 50%–40% of the best 
probability about 35% of the times; so that it returns a good 
probability (either the maximum or half of it) half of the 
times. This shows that there might be room for 
improvement for the greedy strategy we adopted. In the adp 
case, the best probability is returned more than half of the 
times. So the greedy strategy seems to be more effective in 
the adp case. 

We recall that ChaCha state is a 16 32-bit word vector 
(s0, …, s15), where s0, …, s3 are initialised with constant 
values, s4, …, s11 store a 256 bit key, and s12, …, s15 are 
used for the counter and the nonce. Thus, in a single key 
differential attack, only these last four words can be used to 
inject a difference. Furthermore, the first application of the 
four parallel quarter rounds receives as input the words s0+i, 
s4+i, s8+i, s12+i, with i = 0, 1, 2, 3. Thus, the attacker can only 
inject the difference in the last of these four words. Given 
these constrains, the differential characteristic with highest 
probability returned by Algorithm 2 is 0 × 00000000 
00000000 00000000 00008000 → 0 × 00000800 04044040 
80080080 00080080, holding with probability 2–3. 

In Table 5, we report the maximum, minimum and 
average characteristic probability for half and full quarter 
round, found using Algorithm 2 and Algorithm 4. 

The probability is computed over a sample of 216 128-bit 
random input differences. 

In Table 6 and Table 7, we report, respectively, a XOR 
and an additive differential trail covering four rounds. The 
trails were obtained in few milliseconds of computing time. 
These trails could be used for example in differential-linear 
attacks such as the one in Beierle et al. (2020). In this work, 
the authors use differentials with input difference (0, 0, 0, x) 
and probability 2–5 on average. Our method provides an 
elegant and automatic way of finding such differentials. 
Furthermore, the attack in Beierle et al. (2020) exploits a 
differential characteristic for one round only. Using our 
method, one extra round could be added to the attack, at the 
expense of decreasing the trail probability. 

Notice that, contrary to Algorithm 2, Algorithm 4 
cannot be used as is to mount a single key differential 
attack2, since the additive differential trail is found by 
searching for the input differences given an output 
difference. This makes it difficult to find an input difference 
which is 0 in the input words s0, …, s11. Thus, Algorithm 4 
can only be of use for an attacker if combined with other 
techniques. Notice also that in Table 7, the three rounds 
differential trail from round 2 to round 4 has probability  
2–98.4, which is much lower than any other three rounds 
differential trail we were able to find for XOR differences 
with Algorithm 2. 

Last, we also notice that it is easy to build mixed 
(additive-XOR) trails, since one could easily match the 
output of the additive trail with the input of the XOR one. 
For example, if we take round 3 and 4 of Table 7 and use 
the output difference as the input difference to Algorithm 2, 
we obtain a four round trail of probability 2–(19+2+5+43) = 2–69, 
and if we started from round 2 of Table 7, the corresponding 
five round trail would have had probability 2–(77.4+19+2+5+43) = 
2–146.4. The only problem with this approach is that the input 
of the trail cannot be used in the context of ChaCha20 
(stream cipher), not even in the related-key scenario, as the 
initial state is constrained by the constant value of the first 
row of the state, whose additive difference is always 0. 

6 Finding XOR-differential trails with MILP 
solvers 

In this section, we will describe a MILP model to find 
differential trails for ChaCha internal permutation. We want 
to compare the performance of MILP against the method 
presented in Section 3. The techniques used to build our 
MILP model are presented in Fu et al. (2016), where the 
model aims at differential trails for Speck. 

6.1 MILP-based automatic search 
We built our MILP model for the ChaCha permutation, 
modelling their components using inequalities. In the 
following paragraphs, we will describe the inequalities used 
to model each component of the ChaCha stream. 
 
 



 Finding differential trails on ChaCha by means of state functions 169 

Table 4 Precision of the greedy strategy applied in Algorithm 2 and Algorithm 4 (see Section 5 for explanation) 

range xdp 100% (100%–50%] (50%–40%] (40%–30%] (30%–20%] (20%–10%] (10%–0%] 

#matches 11,040 0 23,472 0 22,656 7,072 1,296 
%matches 16.85 0.00 35.82 0.00 34.57 10.79 1.97 
range adp 100% (100%–50%] (50%–40%] (40%–30%] (30%–20%] (20%–10%] (10%–0%] 

#matches 34,344 15,312 3,100 5,372 5,112 2,000 296 
%matches 52.41 23.36 4.73 8.19 7.80 3.05 0.45 

Table 5 Maximum, minimum and average characteristic probability for half and full quarter round, found using Algorithm 2 and 
Algorithm 4 

 (c0; c1) 
HQR  QR 

max min average max min average 

xdp (0, 0) 2–29:00 2–59:00 2–42:09  2–58:00 2–103:00 2–71:46 
adp (0, 0) 2–31:11 2–51:43 2–41:50  2–67:10 2–101:04 2–80:51 

Table 6 Four rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential 
characteristics found iterating Algorithm 2 

Round ∆x 
 

∆y 
Probability 

Rel. Cum. 

1 00000000 00000000 00000000 00000000  00000000 00000000 00000000 08000080 2–7.00 2–7.00 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 00100010 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 00000880 
00000000 00000000 00000000 00800008  00000000 00000000 00000000 00080800 

2 00000000 00000000 00000000 08000080  00808000 88000000 00100010 88000880 2–35.0 2–42.0 
00000000 00000000 00000000 00100010  00001100 10011001 01111011 20002000 
00000000 00000000 00000000 00000880  00100010 80088800 00088088 00880880 
00000000 00000000 00000000 00080800  00880000 00000000 80888000 08088080 

3 00808000 88000000 00100010 88000880  10088001 88091090 00080090 2088A008 2–118. 2–160. 
00001100 10011001 01111011 20002000  13303033 30011010 23130232 00411150 
00100010 80088800 00088088 00880880  88910888 00800889 88880880 A8002088 
00880000 00000000 80888000 08088080  09810880 91980898 19900981 00888800 

4 10088001 88091090 00080090 2088A008  81008890 8802008A 90411049 08A00088 2–189. 2–349. 
13303033 30011010 23130232 00411150  16074136 12221600 73475523 A333B001 
88910888 00800889 88880880 A8002088  08400048 08892888 90000888 809080A1 
09810880 91980898 19900981 00888800  039200A0 98889981 90912809 10991188 

Table 7 Four rounds additive differential trail (of ChaCha internal permutation), with relative and cumulative probability of the 
differential characteristics found iterating Algorithm 4 

Round ∆x 
 

∆y 
Probability 

Rel. Cum. 

1 11BC469C 222C642C 3306926E DDF975C0  BFBE7FE0 34F3AE78 FFBEF378 7F7F8000 2–208. 2–208. 
2DC13904 02464248 08A714E2 21458940  80008000 80410020 C2844104 80000C40 
A27CE21C C90A2EF7 FF3E72F8 BE7AB700  77BEF7C0 FF7F0000 7FFF0000 7EFB7700 
0287A010 28E22301 04222F50 81010100  85001084 C1414040 80000080 C0008000 

2 BFBE7FE0 34F3AE78 FFBEF378 7F7F8000  80000000 FFFBF800 FFBEFFC0 FF800000 2–77.4 2–286. 
80008000 80410020 C2844104 80000C40  00000000 00040000 80408040 00800000 
77BEF7C0 FF7F0000 7FFF0000 7EFB7700  80000000 00000000 7FFF8000 FF7FFF80 
85001084 C1414040 80000080 C0008000  80000080 00000800 80008000 00008000 
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Table 7 Four rounds additive differential trail (of ChaCha internal permutation), with relative and cumulative probability of the 
differential characteristics found iterating Algorithm 4 (continued) 

Round ∆x  ∆y 
Probability 

Rel. Cum. 

3 80000000 FFFBF800 FFBEFFC0 FF800000  80000000 00000000 00000000 00000000 2–19.0 2–304. 
00000000 00040000 80408040 00800000  00000000 80000000 00000000 00000000 
80000000 00000000 7FFF8000 FF7FFF80  00000000 00000000 7FFF8000 00000000 
80000080 00000800 80008000 00008000  00000000 00000000 00000000 00800000 

4 80000000 00000000 00000000 00000000  00000000 00000000 00000000 00000000 2–2.00 2–306. 
00000000 80000000 00000000 00000000  00000000 00000000 00000000 00000000 
00000000 00000000 7FFF8000 00000000  00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00800000  00000000 00000000 00000000 80000000 

Table 8 One rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential 
characteristics found using the MILP model presented in Subsection 6.1 

Round ∆x 
 

∆y 
Probability 

Rel. Cum. 

1 00000000 00000000 00000000 00000000  00000000 00000000 00000000 00000800 2–3.00 2–3.00 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 04044040 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 80080080 
00000000 00000000 00000000 00008000  00000000 00000000 00000000 00080080 

Table 9 Two rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential 
characteristics found using the MILP model presented in Subsection 6.1 

Round ∆x 
 

∆y 
Probability 

Rel. Cum. 

1 00000000 00000000 00000000 00000000  00000000 00000000 00000000 00000800 2–4 2–4. 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 04044040 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 80080080 
00000000 00000000 00000000 00008000  00000000 00000000 00000000 00080080 

2 00000000 00000000 00000000 80000800  00808000 00000880 00040004 88000880 2–33 2–37. 
00000000 00000000 00000000 00040004  44000000 04400440 04444044 02000200 
00000000 00000000 00000000 88000000  00040004 08880080 80880008 88088000 
00000000 00000000 00000000 08080000  00088000 00000000 00888080 80880800 

Table 10 Three rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential 
characteristics found using the MILP model presented in Subsection 6.1 

Round ∆x 
 

∆y 
Probability 

Rel. Cum. 

1 00000000 00000000 00000000 00000000  80000800 00000000 00000000 00000000 2–4 2–4. 
00000000 00000000 00000000 00000000  00040004 00000000 00000000 00000000 
00000000 00000000 00000000 00000000  88000000 00000000 00000000 00000000 
00008008 00000000 00000000 00000000  08080000 00000000 00000000 00000000 

2 80000800 00000000 00000000 00000000  88000880 00808000 00000880 00040004 2–36 2–40. 
00040004 00000000 00000000 00000000  02000200 43800000 04400440 04444044 
88000000 00000000 00000000 00000000  88088000 00040004 08870080 80880008 
08080000 00000000 00000000 00000000  80880800 00088000 00000000 00888080 
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Table 10 Three rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential 
characteristics found using the MILP model presented in Subsection 6.1 (continued) 

Round ∆x 
 

∆y 
Probability 
Rel. Cum. 

3 88000880 00808000 00000880 00040004  02888208 04004408 14400440 c0000400 2–107 2–147. 
02000200 43800000 04400440 04444044  44410005 00021c22 2082280a 04000062 
88088000 00040004 08870080 80880008  82000a88 00004000 04410450 00484440 
80880800 00088000 00000000 00888080  08888000 00040004 00000010 c000c800 

Table 11 Four rounds XOR differential trail (of ChaCha stream cipher), with relative and cumulative probability of the differential 
characteristics found using the MILP model presented in Subsection 6.1 

Round ∆x 
 

∆y 
Probability 

Rel. Cum. 

1 00000000 00000000 00000000 00000000  00000000 00000000 00000000 00000800 2–3 2–3. 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 04044040 
00000000 00000000 00000000 00000000  00000000 00000000 00000000 80080080 
00000000 00000000 00000000 00008000  00000000 00000000 00000000 00080080 

2 00000000 00000000 00000000 00000800  00008008 80080800 40400404 00000880 2–41 2–44. 
00000000 00000000 00000000 04044040  04404404 00400040 04040004 02202042 
00000000 00000000 00000000 80080080  c0400404 08088008 80000008 88000000 
00000000 00000000 00000000 00080080  08080080 00000000 00088008 80800000 

3 00008008 80080800 40400404 00000880  40844404 00480840 80080c00 28020224 2–123 2–167. 
04404404 00400040 04040004 02202042  20222020 20042444 02002060 30100305 
c0400404 08088008 80000008 88000000  04044440 08400848 04400040 20420620 
08080080 00000000 00088008 80800000  00484c04 08880808 00484c04 40808400 

4 40844404 00480840 80080c00 28020224  e0402040 24042002 400c5814 2a202222 2–147 2–314. 
20222020 20042444 02002060 30100305  15250110 20302230 22052143 3e618a08 
04044440 08400848 04400040 20420620  00009005 022a4a24 20002044 a4000220 
00484c04 08880808 00484c04 40808400  20220240 01009445 202a4a04 00004004 

Table 12 Best probabilities found after 24 hours of computation with Algorithm 2 and MILP using different number of cores 

Rounds 
Strategy 

1  2  3  4 

p t p t p t p t 

Algorithm 2 [single core] 2–3 0.7 s  2–37 1.2 s  2–157 1.9 s  2–349 6.7 s 
MILP [single core] 2–3 0.3 s  2–37 3,950 s  2–162 1.2 s  2–426 22,786 s 
MILP [56 cores] 2–3 0.3 s  2–37 9 s  2–147 14s   2–314 88 s 

Note: The time t reported indicates after how long the trail was found within the 24 hours. 

 
6.1.1 Constraints of XOR operation 
For every XOR operation with input differences 

2 2andn n∈ ∈a b   and output difference 2 ,n∈c   the 
constraints at bit level for j in {0 ∙∙∙ n – 1} are 

[ ] [ ]
[ ] [ ]
[ ] [ ]

[ ]+ [ ]+ [ ] +2 [ ]
[ ]+ [ ]+ [ ] +2

d j a j
d j b j
d j c j
a j b j c j d j
a j b j c j

⊕

⊕

⊕

⊕

≥
≥
≥

≥
≤

 (28) 

where d⊕[j] is a dummy variable used to verify there are at 
least two active terms in a[j] ⊕ b[j] = c[[j] every time a[j] ≠ 
0, b[j] ≠ 0, or c[j] ≠ 0. 

6.1.2 Constraints of modular addition 
To construct the constraints of the modular addition, we 
followed (Fu et al., 2016). The authors of Fu et al. (2016) 
used 13 * (n – 1) + 5 inequalities to model the modular 
addition operation modulus 2n with input differences 
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2 2and ,n n∈ ∈a b   and output difference 2 .n∈c   For j in 
{0 ∙∙∙ n – 2} these inequalities are 

[ +1]+ [ +1] [ +1]+ [ ]+ [ ]+ [ ]+ [ ] 0
[ +1] [ +1]+ [ +1]+ [ ]+ [ ]+ [ ]+ [ ] 0

[ +1]+ [ +1]+ [ +1]+ [ ]+ [ ]+ [ ]+ [ ] 0
[ +1] [ +1] [ +1]+ [ ]+ [ ]+ [ ] [ ] 3

[ +1]+ [ +1]+ [ +1]+ [ ]+

a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

a j b j c j a j

− ≥ −
− ≥ −

− ≥ −
− − − − ≥ −

[ ]+ [ ] [ ] 0
[ +1]+ [ +1]+ [ +1] [ ] [ ] [ ]+ [ ] 6

[ +1] [ +1] [ +1]+ [ ] [ ] [ ]+ [ ] 6
[ +1] [ +1] [ +1] [ ]+ [ ] [ ]+ [ ] 6
[ +1] [ +1] [ +1] [ ] [ ]+ [ ]+ [ ] 6

[ +1]+

b j c j d j
a j b j c j a j b j c j d j

a j b j c j a j b j c j d j
a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

a j b

− ≥ −
− − − ≥ −

− − − − − ≥ −
− − − − − ≥ −
− − − − − ≥ −

[ +1]+ [ +1]+ [ ]+ [ ] [ ]+ [ ] 0
[ +1]+ [ +1]+ [ +1]+ [ ] [ ]+ [ ]+ [ ] 0
[ +1]+ [ +1]+ [ +1] [ ]+ [ ]+ [ ]+ [ ] 0
[ +1]+ [ +1] [ +1]+ [ ]+ [ ]+ [ ]+ [ ] 0.

j c j a j b j c j d j
a j b j c j a j b j c j d j
a j b j c j a j b j c j d j
a j b j c j a j b j c j d j

− ≥ −
− ≥ −

− ≥ −
− ≥ −

 (29) 

And also the inequalities 

[ 1]
[ 1]
[ 1]

[ 1]+ [ 1]+ [ 1] 2
[ 1]+ [ 1]+ [ 1] 2,

d a n
d b n
d c n
a n b n c n d
a n b n c n

+

+

+

+

≥ −
≥ −
≥ −
− − − ≥
− − − ≤

 (30) 

where d+ is a dummy variable and d[j] in equation (29) is 
the variable representing the function eq of Theorem 2 in  
Fu et al. (2016). 

Figure 7 The ChaCha quarter round diagram with intermediate 
variables 0 1 2 3, , and′ ′ ′ ′Y Y Y Y  

 

6.1.3 Constraints for the quarter round 
To model the quarter round it was necessary to create 
auxiliary variables for the output differences of the half 
quarter round. In Figure 7, we depict these auxiliary 
variables 0 1 2 3( , , , )′ ′ ′ ′Y Y Y Y  together with both the inputs 
variables (X0, X1, X2, X3) and outputs variables (Y0, Y1, Y2, 
Y3) of the quarter round. From Figure 7, we can observe 
that the inequalities for the modular addition operations are 
the inequalities in equations (29) and (30) where 

( ) ( ){
( ) ( )}

0 1 0 2 3 2

0 1 0 2 3 2

( , , ) , , , , , ,

, , , , , .

′ ′ ′∈

′ ′ ′

a b c X X Y X Y Y

Y Y Y Y Y Y
 (31) 

And the inequalities for the XOR operations are the 
inequalities in equation (28) where 

( ) ( ){
( ) ( )}

3 0 3 1 2 1

3 0 3 1 2 1

( , , ) , , 16 , , , 12 ,

, , 8 , , , 7 .

′ ′ ′ ′∈

′ ′

a b c X Y Y X Y Y

Y Y Y Y Y Y

 
 

 (32) 

6.1.4 Constraints for R rounds 
Considering that in each round the quarter round is applied 
four times, then we need to use the inequalities of quarter 
round (31) and (32) four times. Thus, for the entire R rounds 
we need R × 4 quarter rounds. This gives us 16n(R + 1) 
variables to model the input and output differences of each 
quarter round. 16nR variables for modelling d⊕ of equation 
(28). 16nR variables for modelling the intermediate outputs 
of the quarter rounds. 16R variables for modelling d+ of 
equation (29). And 16(n – 1)R variables for modelling the 
variable d of equation (29). Summing up, this gives us a 
total of 16(3Rn + 2n + R – 1) variables. The number of 
inequalities is distributed as follows. (16)(13)((n – 1)R) + 20 
inequalities for the modular addition operations. And 96nR 
inequalities for the XOR operations. Summing up this gives 
us a total 16R(19n – 8) inequalities. 

6.1.5 Objective function 
Let R be the number of rounds that we are modelling. Also, 
let d[r][j] be the variable representing the function eq of 
Theorem 2 in Fu et al. (2016) at round r and bit j, then 
according to Fu et al. (2016), we need to minimise the 
following expression 

2

1 0

[ ][ ]
R n

r i

d r j
−

= =
  (33) 

6.2 Experimental result with MILP 
We solved the MILP models in a machine running Ubuntu 
20.10 and using 56 parallel Intel(R) Xeon(R) Platinum 8280 
CPUs at 2.70 GHz. The available RAM was 1535GiB. We 
used MiniZinc (Nethercote et al., 2007) to implement the 
model and ORTools (Perron and Furnon, 2023) as the MILP 
solver. This solver was the winner of the MiniZinc 
Challenge 2020. In all our experiments, we stopped the 
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solver after 24 hours, so the solutions found are not always 
the best. We explored the full space only for 1 and 2 rounds. 

In Table 8, Table 9, Table 10, and Table 11, we report 
the lowest weight differential trails found for the objective 
function (33) limiting the time of the solver to 24 hours and 
using the 56 physical cores. These trails are for R ∈ {1, 2, 3, 
4}. 

6.3 Benchmark comparison between MILP and  
S-function technique 

In Table 12, we present a comparison between the MILP 
model and Algorithm 2 in terms of lowest weight found and 
time that each technique took to output the solution. The 
column labelled by p represents the probability of the best 
trail found, while the column labelled by t represents the 
time required to find the trail. 

In the first row of Table 12 (S-function technique), we 
present the results corresponding to Algorithm 2. In this 
case, the results where found with a simple Magma script 
running on a MacBook Pro with macOS v11.2.3 and using a 
single 2.4 GHz Intel Core i9, with negligible RAM usage. 
To have a fair performance comparison with the S-function 
technique, we tried to solve the MILP model using a single 
core, and we reported the best trails found in less than  
24 hours in the second row of the table. In the third row, we 
report the best probabilities found in 24 h by running the 
solver over 56 parallel physical cores and using some 
specific constraints, such as bounding the Hamming weight 
of the ChaCha state after the first round. 

6.4 Comparison with previous work 
In 2017, Aaraj et al. presented a MILP model to find 
differential trails in ChaCha automatically. To the best of 
our knowledge, that MILP model is the only one in the 
literature used to find differential trails in ChaCha core 
permutation. In this work, the authors inject the input 
difference in the full input state. Aaraj et al. constructed two 
MILP models, one at a bit level and the other one at a word 
level. Using those models, they found differential trails for 
two rounds of the ChaCha core permutation with a 
probability of 2–24. Note that our MILP model for the 
ChaCha core permutation is at the bit level. By considering 
differentials in any word of the ChaCha state, we found 
differential trails for up to four rounds with a probability of 
2–48. In particular, we found differential trails for two rounds 
with a probability of 2–2. 

We remark that this work is not presenting a full key 
recovery attack of reduced round ChaCha as it is done, e.g., 
in Aumasson et al. (2008) and Beierle et al. (2020), but our 
focus is on finding ChaCha differential trails in an efficient 
way. 

7 Conclusions and future work 
We proved exact formulas for the XDP and the ADP of the 
half quarter round of ChaCha (Lemma 4 and Lemma 8, 

respectively). Both consist of matrix products that can be 
computed in linear time O(n), and indeed they are very fast 
to compute in practice. 

Under the hypothesis of independence of half quarter 
rounds, we find heuristic formulas for the XDP and the 
ADP of the quarter round of ChaCha (Lemma 5 and  
Lemma 9, respectively). For small word sizes n = 5, 6, 7, 8 
(the real word size of ChaCha is n = 32), we tested these 
heuristic formulas by comparing their results with the exact 
values of XDP and ADP computed by brute force. We 
found that (on average) these formulas are actually lower 
bounds for the real XDP and ADP. Moreover, the heuristic 
formula for the XDP performs better than the one for the 
ADP, meaning both a smaller average error and a smaller 
standard deviation (see Table 2 and Table 3). In other 
words, the hypothesis of independence of half quarter 
rounds is more accurate for the XDP than the ADP. Finally, 
we proposed a greedy strategy to compute good quarter 
round differential characteristics, and used this strategy to 
provide explicit XOR and additive differential trails for up 
to three rounds. As a last contribution, we showed how to 
build an MILP model to find XOR-differential trails in 
ChaCha permutation. The obtained results are similar to the 
ones obtained using S-functions. In our implementations, 
the method using S-functions seems to be significantly 
faster on a single core, but, especially for larger rounds  
(3 and 4), a parallelised implementation of the MILP solver 
returned better probabilities (see Table 12). 

We believe these techniques will help to better 
understand the security of ChaCha stream cipher and of 
other similar constructions. They could be adopted to 
improve current linear-differential attacks (where the 
differential is currently exploited over a single round only), 
or to build mixed XOR-additive differential attacks. 
Towards this direction, we believe it would be interesting to 
find optimal quarter round additive characteristics by 
starting from the input difference (rather than the output 
one), and optimal quarter round XOR characteristics from 
the output difference (rather than the input one). Also, there 
might exist other greedy strategies which might be more 
effective and produce characteristics with higher 
probability. We leave as future research how to use these 
techniques to mount an attack on ChaCha and affect the 
security of the cipher. 
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Notes 
1 While for the XOR-differential trails the difference is injected 

in the nonce and in the counter (the fourth row of the state), in 
the ModAdd differential trail, we inject the difference in the 
full state. 

2 In other words Algorithm 2 can be used to attack ChaCha 
stream cipher (in a single key scenario), while Algorithm 4 
can only be used to attack ChaCha permutation, or in 
combination with other techniques. 


