Network traffic anomaly detection based on deep learning: a review
by Wenjing Zhang; Xuemei Lei
International Journal of Computational Science and Engineering (IJCSE), Vol. 27, No. 3, 2024

Abstract: Network traffic anomaly detection has become an important research topic with the increasing prevalence of network attacks. Deep learning, with its ability to analyse large-scale datasets, has emerged as a powerful tool for network traffic anomaly detection. This paper presents a comprehensive overview of state-of-the-art deep learning-based network traffic anomaly detection models including VAE, BiLSTM, and vision transformer, in terms of dimensional deduction, time dependence and data imbalance. The performance of these models has been evaluated and compared on KDDCUP99 and CICIDS2017 datasets. Finally, we outline challenges and future research aimed at enhancing the performance and practicality of network traffic anomaly detection based on deep learning.

Online publication date: Fri, 03-May-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com